Agents改变游戏规则,亚马逊云科技生成式AI让基础模型加速工作流

最近,Stability AI正式发布了下一代文生图模型——Stable Diffusion XL 1.0这次的1.0版本是Stability AI的旗舰版生图模型,也是最先进的开源生图模型。

在目前的开放式图像模型中,SDXL 1.0是参数数量最多的。官方表示,这次采用的是全新的架构,基础模型的参数规模达到35亿,同时还有一个66亿参数大小的细化模型。而如此强大的生图模型,已经可以在亚马逊云科技Amazon Bedrock上一键访问了!

基础模型全面上新

就在上周,亚马逊云科技发布了一大波基础模型上新。除了刚刚提到的SDXL 1.0,Amazon Bedrock还增加了对Cohere基础模型以及ChatGPT最强竞品——Anthropic的Claude 2的支持。

ecf21220f48b4138aba051de60749e5a.png

 

Cohere研发的大语言模型Command,是一个能够接受用户个性化命令训练的模型,专注于提供文本搜索、文本分类和文本生成三大AI能力。另外,Anthropic推出的Claude 2,其处理能力已经更新到10万个token。相较之前版本,Claude 2在数学、代码、推理能力方面有明显的提升。同时,开发者还可以通过机器学习中心Amazon SageMaker Jumpstart,一键开发各类热门开源模型。比如,Meta最新的Llama 2、世界最大开源社区Hugging Face托管的Falcon、Flan等等。

 

Agents改变游戏规则

不过,基础模型虽然在各种任务上有强大的泛化能力,但随着应用场景的不断扩展,仅靠模型本身已经很难去完成一些复杂的任务了。而前段时间AutoGPT的爆火,则给了学界和工业界一个全新的探索方向——集成了大语言模型的Agent。

概括来说,Agent可以通过最简单的形式运行循环,并且在每一次的迭代中,都会生成自主指令和操作。因此,它们既无需依赖人类来引导对话,还具有高度的可扩展性。

亚马逊云科技也在这个领域进行了自己的探索,并且创新性地提出了全新的Amazon Bedrock Agents。基于Amazon Bedrock提供的Agents功能,开发者可以轻松创建各种生成式AI应用,来完成复杂任务,并根据专有知识源提供最新答案。以往得耗费几个小时编码来实现的过程,现在无需任何手动编码,只要单击几下,Agents就能自动分解任务,创建计划。这样一来,生成式AI应用程序分分钟就搞出来了。

那么,Amazon Bedrock Agents是如何让基础模型加速工作流的呢?具体可分为以下四个步骤:

● 第一步:定义指令和编排,将复杂任务分解为多个步骤

● 第二步:检索增强生成(RAG),配置FM与公司数据互动

● 第三步:完成交互,执行API调用以满足用户请求

● 第四步:在云中安全托管

Amazon Bedrock Agents可以通过简单的API链接到公司数据,将其转换为机器可读的格式,就能生成准确响应。然后自动调用API,满足用户请求。

 

英伟达H100最强加持

然而,基础模型性能不断提升,所带来的是动辄几百万亿的参数。这种复杂性的暴涨,也极大地增加了模型训练和微调的时间——最新的LLM需要数月的时间来进行训练。与此同时,HPC领域也呈现出了类似的趋势。随着精度的提高,用户收集的数据集已经达到了Exabyte级别。为了满足高性能和可扩展性的算力需求,亚马逊云科技全新推出了搭载英伟达最强GPU——H100的Amazon Elastic Compute Cloud(EC2)P5实例。

相较于上一代,Amazon EC2 P5 实例不仅可以将训练时间缩短高达6倍(从几天缩短到几小时),而且还能使训练成本降低高达40%。具体来说,Amazon EC2 P5 实例共搭载了8个NVIDIA H100 Tensor Core GPU,配备640 GB高带宽GPU显存,同时还有第三代AMD EPYC处理器、2 TB系统内存、30 TB本地NVMe存储,以及高达3200 Gbps的总网络带宽。

堪称配置拉满的性能,为最苛刻、计算密集的生成式AI应用提供了支持,包括问答系统、代码生成、视频和图像生成、语音识别等,非常适合训练和运行日益复杂的LLM和CV模型。

基于全新的Amazon EC2 P5 实例,用户可以探索此前难以触及的问题,并且更快地迭代出解决方案。此外,为了满足用户对大规模和低延迟的需求,亚马逊云科技还推出了搭载有Amazon EC2 P5实例的第二代EC2 UltraClusters。作为云中规模最大的ML基础设施,EC2 UltraClusters可提供高达20 exaflops的总计算能力,以及跨20,000多个NVIDIA H100 GPU的低延迟。

 

给模型插入「外接大脑」

从Agent的构建中我们不难看到,所有基于大模型搭建好的应用,想要获取实时数据,都需要建立在检索增强生成(RAG)之上。而这一技术是向量数据库能够在AI应用中发挥重要作用的根本。

在亚马逊云科技峰会上,首次推出了——Amazon OpenSearch Serverless向量引擎。开发者们通过这个工具,就可以轻松使用向量数据库,快速构建基于大模型的搜索体验。总的来说,Amazon OpenSearch Serverless向量引擎引入了简单、可扩展和高性能的向量存储和搜索功能。开发者可以快速存储和查询各种ML模型(包括Amazon BedRock提供的模型)生成的数十亿个向量嵌入,响应时间仅为毫秒级。

当前,生成式AI大爆发,所有垂直领域的企业都在转向这一热潮,并探索通过集成高级对话生成AI应用程序,以改变用户体验,以及和数字平台交互的方法。亚马逊云科技推出的这项工具,通过使用向量嵌入,能够增强ML搜索和生成式AI。

向量嵌入在用户私有数据上进行训练,并能表示信息的语义和上下文属性。这样做的优势在于,能够及时处理用户的查询,以查找最接近的向量,并将其与其他元数据组合在一起,进而无需依赖外部数据源或其他应用程序代码集成结果。

值得一提的是,向量引擎是基于Amazon OpenSearch Serverless构建,因此无需担心后端基础架构的大小、调整和扩展。所有数据都持久保存在Amazon Simple Storage Service(Amazon S3)中。当向量数量从原型开发时的几千个增长到生产时的上亿个甚至更多,向量引擎将无缝扩展,无需重新索引或重新加载数据来扩展基础架构。

此外,向量引擎还为索引和搜索工作负载提供独立计算,因此开发者可以实时无缝地摄取、更新和删除向量,同时确保用户体验不受查询性能的影响。借助对Amazon OpenSearch Serverless的向量引擎支持,开发人员将拥有一个简单、可扩展和高性能的解决方案,来构建机器学习增强的搜索体验和生成性人工智能应用程序,而无需管理向量数据库基础设施。

 

全球生成式AI领导者

随着数据量大爆发、可高度扩展算力的可用性、以及机器学习技术的进步,让生成式AI足以改变每个行业。因此,越来越多的企业希望快速采用最新技术,创造价值。选择正确的模型,使用公司数据安全定制模型,并将其集成到应用程序中是一个复杂的过程,都需要花费大量时间、和高度专业化的知识。恰恰,亚马逊云科技Amazon Bedrock简化了这一流程,通过简单的API访问一流的基础模型。

通过Amazon Bedrock Agents这一完全托管的服务,开发者能够轻松创建基于生成式AI的应用程序,以完成各种用例的复杂任务。其中Vector Database,能够帮助开发者的应用程序实时存储数据,及时召回信息,提供更好的用户体验。Amazon EC2 P5实例更是为模型训练节省大量时间和算力。基于以上的创新,真正诠释了亚马逊云科技是端到端的生成式AI领导者,帮助企业开发者释放生成式AI的潜力,创造价值。

同时,亚马逊云科技不断降低生成式AI的门槛,更是致力于GenAI普惠的领导者。

前段时间,亚马逊云科技刚刚宣布了编程助手Amazon CodeWhisperer可用,能够使用底层基础模型帮助开发人员提高工作效率。它可以根据开发人员使用自然语言留下的注释和IDE(集成开发环境)中的历史代码实时生成代码建议。

这次,Amazon CodeWhisperer首次与Amazon Glue Studio Notebooks实现集成,能够帮助用户优化使用体验,提高开发效率。通过Amazon Glue Studio Notebooks,开发人员用特定语言来编写任务,然后Amazon CodeWhisperer会推荐一个或多个可以完成此任务的代码片段。

Amazon CodeWhisperer针对最常用的API进行了优化,例如Amazon Lambda或Amazon Simple Storage Service(Amazon S3),使其成为构建应用程序开发者们的绝佳编码伴侣。除此之外,亚马逊云科技还提供了7门免费的技能培训课程,帮助开发者以使用生成式AI。其中,还联手吴恩达推出了「用大型语言模型构建生成式AI」新课程。

● 医疗领域已有落地应用

今年这波AI大模型的浪潮,也激发了人们对生成式AI在医疗行业的应用的探索。对于AI在医疗行业的应用,亚马逊云科技也同样有所行动,发布了一款面向医疗保健软件提供商的全新服务——Amazon HealthScribe。

Amazon HealthScribe通过使用使用生成式AI的机器学习模型和语音识别,能自动起草临床文档,帮助临床医生转录和分析他们与患者的对话。它的自然语言处理功能,还可以从对话中提取复杂的医学术语,比如药物和医学状况。病史、要点、就诊原因,一应俱全。Amazon HealthScribe中的AI功能,正是由Amazon Bedrock提供支持的,通过预训练模型,用户就可以从初创公司以及亚马逊自身构建生成式AI了。

可以说,作为全球云计算的开创者,亚马逊云科技看到了AI浪潮当下,生成式人工智能的潜力和重要性。生成式AI能够有改变每一个应用程序、每一个业务、甚至每一个行业。数据处理、算力和机器学习的进步,正在加速许多企业从实验到部署的转变。

通过提供Amazon Bedrock等服务,以及与行业领导者的合作,这家公司正在普及对生成性人工智能的访问。在不断创新的基础上,亚马逊云科技正在让开发者,让世界重新构想体验,把最好的产品带入生活。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/54249.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录电赛色块追踪部分

代码其实也很简单,我只不过加入了按键控制暂停、蜂鸣器、led和如何控制追踪的效果(调PID)。B站的那些大神早早地完成了要求,我犯了一个不好地错误,企图三连让他们分享思路,这是不对的,电赛本身的…

无人机巢的作用及应用领域解析

无人机巢作为无人机领域的创新设备,不仅可以实现无人机的自主充电和电池交换,还为无人机提供安全便捷的存放空间。为了帮助大家更好地了解无人机巢,本文将着重解析无人机巢的作用和应用领域。 一、无人机巢的作用 无人机巢作为无人机技术的重…

读发布!设计与部署稳定的分布式系统(第2版)笔记28_控制层上

1. 控制层囊括所有在后台运行的成功处理生产负载的软件和服务 1.1. 处理用户生产数据的那些软件,就是生产软件 1.2. 主要工作是管理其他软件的软件,就是控制层 1.3. 工具和问题之间存在着重叠和空白,并不是每个工具组合都能协同工作&#…

yxBUG记录

1、 原因:前端参数method方法名写错。 2、Field ‘REC_ID‘ doesn‘t have a default value 问题是id的生成问题。 项目的表不是自增。项目有封装好的方法。调用方法即可。 params.put("rec_id",getSequence("表名")) 3、sql语句有问题 检…

MySql之慢Sql定位分析

MySql之慢Sql定位分析 定位低效率执行SQL 可以通过以下两种方式定位执行效率较低的SQL语句。 慢查询日志:通过慢查询日志定位那些执行效率较低的SQL语句,用- log-slow-queries[ file name]选项启动时, mysqld是一个包含所有执行时间超过 long_query_time秒的sql请句的日志文…

常用SQL语句总结

SQL语句 文章目录 SQL语句1 SQL语句简介2 DQL(数据查询语句)3 DML(数据操纵语句)4 DDL(数据定义语句)5 DCL(数据控制语句)6 TCL(事务控制语句) 1 SQL语句简介…

备战秋招 | 笔试强训24

目录 一、选择题 二、编程题 三、选择题题解 四、编程题题解 一、选择题 1、请指出选择排序,冒泡排序,快速排序的时间复杂度分别是() A. O(n^2)、O(n^2)、O(n*log2n) B. O(n*log2n)、、O(n^2)、O(n*log2n) C. O(n…

scanf函数读取数据 清空缓冲区

scanf函数读取数据&清空缓冲区 scanf 从输入缓冲区读取数据数据的接收数据存入缓冲区scanf 中%d读取数据scanf中%c读取数据 清空输入缓冲区例子用getchar()吸收回车练习 scanf 从输入缓冲区读取数据 首先,要清楚的是,scanf在读取数据的时候&#xff…

uniapp:图片验证码检验问题处理

图形验证码功能实现 uniapp:解决图形验证码问题及利用arraybuffer二进制转base64格式图片(后端传的图片数据形式:x00\x10JFIF\x00\x01\x02\x00…)_❆VE❆的博客-CSDN博客 UI稿: 需求:向后端请求验证码图片&…

HttpServletRequest和HttpServletResponse的获取与使用

相关笔记:【JavaWeb之Servlet】 文章目录 1、Servlet复习2、HttpServletRequest的使用3、HttpServletResponse的使用4、获取HttpServletRequest和HttpServletResponse 1、Servlet复习 Servlet是JavaWeb的三大组件之一: ServletFilter 过滤器Listener 监…

深度学习(35)—— StarGAN(2)

深度学习(34)—— StarGAN(2) 完整项目在这里:欢迎造访 文章目录 深度学习(34)—— StarGAN(2)1. build model(1)generator(2&#…

react中hooks的理解与使用

一、作用 我们知道react组件有两种写法一种是类组件,另一种是函数组件。而函数组件是无状态组件,如果我们要想改变组件中的状态就无法实现了。为此,在react16.8版本后官方推出hooks,用于函数组件更改状态。 二、常用API 1、use…