【机器学习】分类模型的评价方法

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

#学习笔记#

目录

一、混淆矩阵(Confusion Matrix)

二、评估指标(Evaluation metrics)

1.正确率(accuracy)

2.精准率(precision)

3.召回率(recall)

4.调和平均值(F1)

 三、ROC、AUC与P-R曲线

1.ROC曲线

2.AUC

3.P-R曲线


一、混淆矩阵(Confusion Matrix)

混淆矩阵可以用来评估分类模型的正确性,该矩阵是一个方阵,矩阵的数值用来表示模型预测结果与真实结果的对比统计。包括真正例(True Positive)、假正例(False Positive)、真负例(True Negative)、假负例(False Negative)。

 通过上图我们不难得出以下几点结论:

1.竖着来看,正正例(TP)+假负例(FN)= 预测为正样本的数量,假正例(FP)+ 真负例(TN)= 预测为负样本的数量;

2.横着来看,真正例(TP)+ 假正例(FP)= 正样本的数量。假负例(FN)+ 真负例(TN)= 负样本的数量。

3.整体来看,真正例(TP)+ 假正例(FP)+ 假负例(FN)+ 真负例(TN) = 所有样本数量

如何确定正样本和负样本?

一般来我们规定样本少的为正样本,或我们更关注的为正样本。例如垃圾邮件检测中的垃圾邮件,癌症筛查中的癌症患者。

二、评估指标(Evaluation metrics)

从混淆矩阵中可以得到更高级的分类指标,不同的指标在不同场景中发挥作用。

1.正确率(accuracy)

正确率的定义:

 简单来说就是所有预测对的占所预测的数量

2.精准率(precision)

精准率的定义如下:

即正确预测为正的数量占所有预测为正的数量,又称查准率。在垃圾邮件或垃圾短信识别中比较看重

3.召回率(recall)

召回率的定义如下:

即正确预测为正的数量占所有为正的数量,又称查全率,可以理解为宁可错杀一百也不放过一个,在癌症排查,或者流行病筛查中比较看重

4.调和平均值(F1)

F1定义为精确率预召回率的调和平均值:

 三、ROC、AUC与P-R曲线

1.ROC曲线

使用图形来描述二分类系统的性能表现。图形的纵轴为正正例率(TPR--True Positive Rate),横轴为家正例率(FPR--False Positive Rate)。其中,真正例率与加正例率定义为:

 

 ROC曲线通过真正例率(TPR)与假正例率(FPR)两项指标,可以用来评估分类模型的性能。真正例率与假正例率可以通过移动分类模型的阈值进行计算。随着阈值的改变。真正例率与假负例率也会随之发生改变,进而就可以在ROC曲线坐标上形成多个点

随着阈值的降低,TPR与FPR都会增大,重要的是,看谁增长的更快,如果TPR增长的更快,则曲线越想上凸,模型的分类效果越好。

2.AUC

AUC(Area Under the Curve)是指ROC曲线下的面积,在比较多个分类模型效果时,会比ROC曲线更加直观。

3.P-R曲线

模型在不同的阈值下,会对应不同的精准率与召回率,我们以横轴为召回率,纵轴为精准率,将这些点连成线就构成了P-R(Precision-recall)曲线。

P-R曲线上的点体现为不同阈值下,精准率与召回率的对应关系

关于P-R曲线,说明如下

(1)精准率与召回率无法同时增大,一个增大时,另一个可能就会降低

(2)随着召回率的增加,精准率一定会呈现下降的趋势

(3)当对精准率或召回率具有定量要求时,P-R曲线就会非常有用

以上

学习在于行动,总结和坚持,共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/544563.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV系列文章目录(持续更新中......)

引言: OpenCV是一个开源的计算机视觉库,由英特尔公司开发并开源的一组跨平台的C函数和少量的C函数组成,用于实时图像处理、计算机视觉和机器学习等应用领域。OpenCV可以在包括Windows、Linux、macOS等各种操作系统平台上使用,具…

重学SpringBoot3-整合SSM

更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-整合SSM Spring Boot整合SSM示例1. 创建Spring Boot项目2. 配置数据源3. 配置MyBatis4. 实现数据访问对象(DAO)5. 编写服务层和控…

力扣热题100_矩阵_240_搜索二维矩阵 II

文章目录 题目链接解题思路解题代码 题目链接 240. 搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 示例 1: 输入&#xf…

【计算机视觉】二、图像形成——实验:2D变换编辑(Pygame)

文章目录 一、向量和矩阵的基本运算二、几何基元和变换1、几何基元(Geometric Primitives)2、几何变换(Geometric Transformations)2D变换编辑器0. 程序简介环境说明程序流程 1. 各种变换平移变换旋转变换等比缩放变换缩放变换镜像变换剪切变换 2. 按钮按钮类创建按钮 3. Pygam…

RabbitMQ高级-高级特性

1.消息可靠性传递 在使用RabbitMQ的时候,作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ为我们提供了两种方式来控制消息的投递可靠性模式 1.confirm 确认模式 确认模式是由exchange决定的 2.return 退回模式 回退模式是由routing…

Ubuntu Linux - Primavera P6 EPPM 安装及分享

引言 根据计划,近日我制作了基于Ubuntu Linux 的P6虚拟机环境,同样里面包含了全套P6 最新版应用服务 此虚拟机仅用于演示、培训和测试目的。如您在生产环境中使用此虚拟机,请先与Oracle Primavera销售代表取得联系,以获取所需的应…

Python Web开发记录 Day12:Django part6 用户登录

名人说:东边日出西边雨,道是无晴却有晴。——刘禹锡《竹枝词》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 1、登录界面2、用户名密码校验3、cookie与session配置①cookie与session②配置…

【安全类书籍-3】XSS跨站脚剖析与防御

目录 内容简介 作用 下载地址 内容简介 这本书涵盖以下几点: XSS攻击原理:解释XSS是如何利用Web应用未能有效过滤用户输入的缺陷,将恶意脚本注入到网页中,当其他用户访问时被执行,实现攻击者的目的,例如窃取用户会话凭证、实施钓鱼攻击等。 XSS分类:分为存储型XSS(…

leetcode每日一题--矩阵中移动的最大次数

一.题目原型 二.思路解析 1.动态规划 这道题要求的是矩阵的最大移动次数。根据题目意思,从索引 0 列开始向右移动,每次移动一列,最多移动到 n - 1 列,也就是 n - 1次。其移动规则为:当前单元格可以移动到其右上方、正…

2核4g服务器够用吗?

2核4G服务器够用吗?够用。阿腾云以2核4G5M服务器搭建网站为例,5M带宽下载速度峰值可达640KB/秒,阿腾云以搭建网站为例,假设优化后平均大小为60KB,则5M带宽可支撑10个用户同时在1秒内打开网站,并发数为10&am…

SqlServer2008(R2)(一)SqlServer2008(R2)经典宝藏操作收集整理

一、常见操作 1、TRUNCATE TABLE 语句 删除表数据 TRUNCATE TABLE语句比DELET删除表中的所有行更快。从逻辑上讲,TRUNCATE TABLE它类似于DELETE没有WHERE子句的语句。 TRUNCATE TABLE语句从表中删除所有行,但表结构及其列,约束,…

​​SQLiteC/C++接口详细介绍之sqlite3类(十一)

返回目录:SQLite—免费开源数据库系列文章目录 上一篇:​​SQLiteC/C接口详细介绍之sqlite3类(十) 下一篇:​​SQLiteC/C接口详细介绍之sqlite3类(十二)(未发表) 33.sq…