数据结构的概念大合集01(含数据结构的基本定义,算法及其描述)

概念大合集01

  • 1、数据结构基础的定义
  • 2、数据结构
    • 2.1 数据元素之间关系的集合
    • 2.2数据结构的三要素
      • 2.2.1数据的逻辑结构
      • 2.2.2数据的存储(物理)结构
      • 2.2.3数据的运算
  • 3、数据类型
  • 4、抽象数据类型类型(ADT)
  • 5、算法及其描述
    • 5.1算法的5个特性
    • 5.2算法设计的目标
    • 5.3算法的时间复杂度
      • 5.3.1时间复杂度的求和、求积定理
    • 5.4算法的空间复杂度

阅读指导:
       本文内容丰富,涵盖广泛,读者朋友们可以根据目录指引,直接跳跃至您感兴趣的章节开始品读。此外,作者正在积极创作后续篇章,如果您对本篇文章有所喜爱,不妨点击关注,以便第一时间获取最新作品动态。
       现在,让我们开始正文的旅程吧。希望您能细细品味每一个字句,如果您在任何地方发现有任何不妥或欠缺之处,请在评论区不吝赐教。作者将虚心接受您的宝贵意见,并努力进行改进。期待您的宝贵反馈!
下一篇文章
数据结构的概念大合集02(线性表)

1、数据结构基础的定义

名称具体概念
数据描述客观事物的数和字符的集合,能被计算机程序处理的符号总称
数据元素数据的基本单位,又称元素、结点、顶点、记录
数据项是具有独立含义的数据最小单位,是构成数据元素的最小单位,又称字段、域
数据对象性质相同的数据元素的集合,是数据的一个子集
数据结构是相互之间存在一种或多种特定关系的数据元素的集合,包括逻辑结构和物理结构
数据类型是一个值的集合和定义在这个值集上的一组操作的总称
抽象数据类型是指一个数学模型以及定义在该模型上的一组操作

请添加图片描述

2、数据结构

2.1 数据元素之间关系的集合

数据的基本结构关系
集合属于同一个集合,没有什么具体关系
线性结构一对一
树形结构一对多
图形(网状)结构多对多

2.2数据结构的三要素

2.2.1数据的逻辑结构

从逻辑上表示数据,与具体的存储无关

数据的逻辑结构
线性结构
非线性结构
线性表
队列
集合

2.2.2数据的存储(物理)结构

指的是数据的逻辑结构在计算机的具体实现,依赖于计算机语言

数据的存储结构
顺序存储
链式存储
索引存储
散列存储 哈希存储

2.2.3数据的运算

数据的运算包括运算定义运算实现

  • 运算定义:对于运算功能的描述,是抽象的,是基于逻辑关系的
  • 运算实现:是程序员完成运算的实现算法,是具体的,是基于存储结构的

3、数据类型

指的是一组性质相同的值的集合和定义在此集合上的一组操作的总称
比如C语言中的int、float等。

4、抽象数据类型类型(ADT)

逻辑结构+抽象运算
定义抽象数据类型:
ADT 抽象数据类型名
{
数据对象:<数据对象的定义>
数据关系:<数据关系的定义>
基本操作:<基本操作的定义>
}

5、算法及其描述

5.1算法的5个特性

又穷性;确定性;可行性;有输入;有输出

5.2算法设计的目标

正确性;可使用性;可读性;健壮性;高效率与低存储量需求

5.3算法的时间复杂度

主要衡量的是一个算法的运行速度。为了描述一个算法的时间复杂度,人们发明了一个通用的表示方法:

「 大O符号表示法 」,即 T(n) = O(f(n))

我们先来看个例子:

for(i=1; i<=n; ++i) //第一行
{j = i;	//第三行j++;		//第四行
}

在大O符号表示法中,f(n)表示每行代码的执行次数之和;

所以上述代码中,第一行执行一次,第三行执行n次,第四行执行n次,整段代码执行(1+2n)次,即f(n)=1+2n;

取波极限,当n无穷大时,则令f(n)=n(注意不是2n,这是简化的写法);

于是此时T(n) = O(n);

为什么可以大O表示法可以简写呢,主要是因为这个表达式主要是表示代码执行时间的增长的变化趋势的,所以当n无穷大时,常数1和倍数2的意义就不是很大了。所以在采取大O表示法的时候,我们常取其指数最大的一项来表示,同时省略其他项和指数最大项的倍数。

常见的时间复杂度量级有:

  • 常数阶O(1)
  • 对数阶O(logN)
  • 线性阶O(n)
  • 线性对数阶O(nlogN)
  • 平方阶O(n²)
  • 立方阶O(n³)
  • K次方阶O(n^k)
  • 指数阶(2^n)

上面从上至下依次的时间复杂度越来越大,执行的效率越来越低。

5.3.1时间复杂度的求和、求积定理

T1(n) = O(f(n))
T2(n) = O(g(n))
求和:T1(n) + T2(n) = O( Max ( f(n),g(n) ) )
求积:T1(n) × T2(n) = O( f(n) × g(n) )

5.4算法的空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的一个量度,同样反映的是一个趋势,我们用 S(n) 来定义。与上面的时间复杂度一样,也采用大O表示法。
即S(n) = O( g(n) )
举例:

  1. 空间复杂度O(1)
    如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,可表示为 O(1)
    举例:
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;

代码中的 i、j、m 所分配的空间都不随着处理数据量变化,因此它的空间复杂度 S(n) = O(1)

  1. 空间复杂度O(n)
int fun(int n)
{return n < 2 ? n : fun(n - 1)*n;
}

阶乘递归函数会依次调用fun(N),fun(N-1),…,fun(2),fun(1),开辟了n个空间,所以空间复杂度为O(n) 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/545140.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

@RequestParam、@PathVariable、@RequestBody

1、中文翻译 RequestParam-请求参数、PathVariable-路径变量、RequestBody请求体 2、作用&#xff1a; Controller中获取前端传递的参数 3、从注解本身角度分析 3.1、PathVariable&#xff1a;路径变量 通过 PathVariable 可以将URL中占位符参数{xxx}绑定到处理器类的方法形…

四连杆机构运动学仿真 | 【Matlab源码+理论公式文本】

【程序简介】&#x1f4bb;&#x1f50d; 本程序通过matlab实现了四连杆机构的运动学仿真编程&#xff0c;动态展现了四连杆机构的运动动画&#xff0c;同时给出了角位移、角速度和角加速度的时程曲线&#xff0c;除了程序本身&#xff0c;还提供了机构运动学公式推导文档&…

【Exception系列】SocketTimeoutException

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【Spring Boot】创建你的第一个 Spring Boot 应用

创建你的第一个 Spring Boot 应用 1.环境配置2.步骤详解3.项目结构分析3.1 入口类 DemoApplication3.2 控制器 PathVariableController3.3 控制器 BasicController3.4 模型 User 4.运行 Spring Boot 目前已经成为了 Java 开发领域的框架范式。本篇博客&#xff0c;我将带领大家…

java小型人事管理系统

开发工具&#xff1a; MyEclipseJdkTomcatSQLServer数据库 运行效果视频&#xff1a; https://pan.baidu.com/s/1hshFjiG 定制论文&#xff0c;联系下面的客服人员

软考80-上午题-【面向对象技术3-设计模式】-结构型设计模式03

一、外观模式 1-1、意图 为子系统中的一组接口提供一个一致的界面。 Facade 模式定义了一个高层接口&#xff0c;这个接口使得这一子系统更加容易使用。 1-2、结构 Facade 知道哪些子系统类负责处理请求&#xff1a;将客户的请求代理给适当的子系统对象。Subsvstem classes …

2023年中国抗DDoS市场规模现状及竞争格局,公有云抗DDoS是主要增长点

分布式拒绝服务&#xff08;DDoS&#xff09;是在DoS基础之上产生的一种新的攻击方式&#xff0c;具有多对一的攻击模式。它通过制造伪造的流量&#xff0c;使得被攻击的服务器、网络链路或是网络设备&#xff08;如防火墙、路由器等&#xff09;负载过高&#xff0c;无法处理正…

个人简历主页搭建系列-03:Hexo+Github Pages 介绍,框架配置

今天的更新内容主要是了解为什么选择这个网站搭建方案&#xff0c;以及一些前置软件的安装。 Why Hexo? 首先我们了解一下几种简单的网站框架搭建方案&#xff0c;看看对于搭建简历网站的需求哪个更合适。 在 BuiltWith&#xff08;网站技术分析工具&#xff09;上我们可以…

鸿蒙开发实现弹幕功能

鸿蒙开发实现弹幕功能如下&#xff1a; 弹幕轮播组件&#xff1a;BannerScroll import type { IDanMuInfoList, IDanMuInfoItem } from ../model/DanMuData //定义组件 Component export default struct BannerScroll {//Watch 用来监视状态数据的变化&#xff0c;包括&#…

OPENCV(0-1之0.2)

OPENCV-0.2 学习安排图像基础像素访问和修改像素值 色彩空间转换RGB到灰度的转换RGB到HSV的转换 图像操作裁剪缩放旋转和翻转 图像滤波平滑和模糊图像边缘检测 图像变换仿射变换透视变换 总结 官方文档 学习安排 图像基础 像素&#xff1a;了解像素的概念&#xff0c;包括像素…

2025武忠祥考研数学,视频百度网盘+基础全程课程PDF

“得数学者的天下”&#xff0c;25考研首先要开始的就是数学复习&#xff0c;而数学复习首先要开始的必然是高数&#xff01; 很多同学选择了跟着武忠祥老师学习高数&#xff0c;但是具体要怎么学&#xff1f;用什么书&#xff1f;怎么刷题&#xff1f;快来看看以 下的武忠祥…

[自研开源] MyData 数据集成之数据过滤 v0.7.2

开源地址&#xff1a;gitee | github 详细介绍&#xff1a;MyData 基于 Web API 的数据集成平台 部署文档&#xff1a;用 Docker 部署 MyData 使用手册&#xff1a;MyData 使用手册 试用体验&#xff1a;https://demo.mydata.work 交流Q群&#xff1a;430089673 概述 本篇基于…