【人工智能】英文学习材料03(每日一句)

🌻个人主页:相洋同学
🥇学习在于行动、总结和坚持,共勉!

 目录

Chain Rule (链式法则)

Dimensionality Reduction (降维)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Gradient Explosion (梯度爆炸)

Gradient Vanishing (梯度消失)

Dropout (Dropout)

Seq2Seq (Seq2Seq)

One-Hot Encoding (One-Hot 编码)

Self-Attention Mechanism (自注意力机制)

Multi-Head Attention Mechanism (多头注意力机制)


Chain Rule (链式法则)

The Chain Rule is a fundamental principle in calculus used to compute the derivative of a composite function. It states that if you have two functions, where one function is applied to the result of another function, the derivative of the composite function is the derivative of the outer function multiplied by the derivative of the inner function.

  • fundamental(基本的、根本的)
  • calculus (微积分)
  • derivative (导数)
  • composite function (复合函数)
  • function (函数)
  • multiplied (乘以)

Dimensionality Reduction (降维)

Dimensionality Reduction refers to the process of reducing the number of random variables under consideration by obtaining a set of principal variables. It's often used in the field of machine learning and statistics to simplify models, improve speed, and reduce noise in data.

  • refers to(概念、指的是)
  • random variables (随机变量)
  • principal variables (主要变量)
  • statistics (统计学)
  • simplify (简化)

Long Short-Term Memory (LSTM) (长短期记忆网络)

Long Short-Term Memory networks, or LSTMs, are a special kind of Recurrent Neural Network (RNN) capable of learning long-term dependencies. LSTMs are designed to avoid the long-term dependency problem, allowing them to remember information for long periods.

  • long-term dependencies (长期依赖)
  • long-term dependency problem (长期依赖问题)
  • periods (周期)

Gradient Explosion (梯度爆炸)

Gradient Explosion refers to a problem in training deep neural networks where gradients of the network's loss function become too large, causing updates to the network's weights to be so large that they overshoot the optimal values, leading to an unstable training process and divergence.

  • overshoot (超过)
  • optimal values (最优值)
  • unstable (不稳定)
  • divergence (发散)

Gradient Vanishing (梯度消失)

Gradient Vanishing is a problem encountered in training deep neural networks, where the gradients of the network's loss function become too small, significantly slowing down the training process or stopping it altogether, as the network weights fail to update in a meaningful way.

  • encountered (遇到)
  • significantly (显著地)
  • altogether (完全)
  • meaningful way (有意义的方式)

Dropout (Dropout)

Dropout is a regularization technique used in training neural networks to prevent overfitting. By randomly omitting a subset of neurons during the training process, dropout forces the network to learn more robust features that are not dependent on any single set of neurons.

  • regularization technique (正则化技术)
  • prevent (防止)
  • omitting (省略)
  • subset (子集)
  • robust features (健壮的特征)
  • dependent (依赖)
  • single set (单一集合)

Seq2Seq (Seq2Seq)

Seq2Seq, or Sequence to Sequence, is a model used in machine learning that transforms a given sequence of elements, such as words in a sentence, into another sequence. This model is widely used in tasks like machine translation, where an input sentence in one language is converted into an output sentence in another language.

  • Sequence to Sequence (序列到序列)
  • transforms (转换)
  • sequence (序列)
  • elements (元素)
  • converted into(将某物变换或转换成)

One-Hot Encoding (One-Hot 编码)

One-Hot Encoding is a process where categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction. It represents each category with a vector that has one element set to 1 and all other elements set to 0.

  • categorical variables (类别变量)
  • converted (转换)
  • ML algorithms (机器学习算法)
  • represents (表示)
  • category (类别)
  • element (元素)

Self-Attention Mechanism (自注意力机制)

The Self-Attention Mechanism allows a model to weigh the importance of different parts of the input data differently. It is an essential component of Transformer models, enabling them to dynamically prioritize which parts of the input to focus on as they process data.

  • weigh (权衡)
  • essential component (重要组成部分)
  • dynamically (动态地)
  • prioritize (优先考虑)
  • process data (处理数据)

Multi-Head Attention Mechanism (多头注意力机制)

The Multi-Head Attention Mechanism is a technique used in Transformer models that allows the model to attend to information from different representation subspaces at different positions. It performs multiple self-attention operations in parallel, enhancing the model's ability to focus on various aspects of the input data simultaneously.

  • attend to (关注)
  • representation subspaces (表示子空间)
  • positions (位置)
  • performs (执行)
  • self-attention operations (自注意力操作)
  • parallel (并行)
  • enhancing (增强)
  • various aspects (各个方面)
  • simultaneously (同时)

以上

君子坐而论道,少年起而行之,共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/548870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线程池详解

线程池详解 一,为什么要用线程池 ① Java的线程模型是基于操作系统的原生线程模型实现的,所以说Java线程实际上是基于内核实现的,创建,析构,同步都需要从用户态切换至内核态,这样带来的性能损耗是很大的。…

数据库事务中“锁”的分类

数据库事务中的锁可以按照不同的维度进行分类。以下是一些常见的分类方式: 1、按锁的粒度分类: 行锁(Row-level lock):锁定单个或少量的数据行。这种锁粒度小,允许高度的并发,但管理开销大。页…

《1w实盘and大盘基金预测 day6》

昨日预测完美,点位基本符合,我预测3052,实际最低3055。 走势也符合高平开,冲高回落,再反震荡上涨 大家可以观察我准不准哟~后面有我的一些写笔记、分享的网站。 关注公众号,了解各种理财预测内…

【Windows 常用工具系列 15 -- VMWARE ubuntu 安装教程】

文章目录 安装教程镜像下载 工具安装 安装教程 安装教程参考链接:https://blog.csdn.net/Python_0011/article/details/131619864 https://linux.cn/article-15472-1.html 激活码 VMware 激活码连接:https://www.haozhuangji.com/xtjc/180037874.html…

STM32实验DMA数据搬运小助手

本次实验做的是将一个数组的内容利用DMA数据搬运小助手搬运到另外一个数组中去。 最后的实验结果: 可以看到第四行的数据就都不是0了,成功搬运了过来。 DMA实现搬运的步骤其实不是很复杂,复杂的是结构体参数: 整个步骤为&#xf…

三级等保技术建议书

1信息系统详细设计方案 1.1安全建设需求分析 1.1.1网络结构安全 1.1.2边界安全风险与需求分析 1.1.3运维风险需求分析 1.1.4关键服务器管理风险分析 1.1.5关键服务器用户操作管理风险分析 1.1.6数据库敏感数据运维风险分析 1.1.7“人机”运维操作行为风险综合分析 1.2…

JEDI:变形下分子和周期系统应变分析的通用代码

JEDI:变形下分子和周期系统应变分析的通用代码 拉伸或压缩会引起材料显着的能量、几何和光谱变化。为了在机械或压致变色材料、自修复聚合物和其他机械响应装置的设计中充分利用这些效应,必须详细了解材料中机械应变的分布。在过去的十年中,能…

PSCA系统控制集成之复位层次结构

PPU 提供以下对复位控制的支持。 • 复位信号Reset signals:PPU 提供冷复位和热复位输出信号。PPU 还为实现部分保留的电源域管理提供了额外的热复位输出信号。 • 电源模式控制Power mode control:PPU 硬件适当地管理每个支持的电源模式转换的复位信号…

代码随想录算法训练营第day29|491.递增子序列、 46.全排列、 47.全排列 II

目录 491.递增子序列 46.全排列 47.全排列 II 491.递增子序列 力扣题目链接 给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。 示例: 输入: [4, 6, 7, 7]输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7,…

《前端系列》之前端学习路线

目录 1 前言2 前端学习路线2.1 入门阶段2.1.1 HTML2.1.2 CSS2.1.3 JavaScript2.1.4 网络基础 2.2 基础阶段2.2.1 前端框架2.2.2 深入JavaScript2.2.3 ES62.2.4 工程化知识 2.3 进阶阶段2.3.1 CSS2.3.2 Javascript2.3.3 单元测试2.3.4 性能优化 3 总结 1 前言 在技术更新迭代发…

Android Studio:你的主机中的软件终止了一个已建立的连接

我不喜欢等人也不喜欢被别人等——赤砂之蝎 一、提出问题 二、分析问题 搜索网上的教程尝试解决 1、任务管理器结束adb进程无用 2、电脑没有开启热点排除热点问题 3、校园网切换到热点 4、项目重新解压打开 5、更换国内镜像源 上述方法全部无法解决问题 分析问题原因在于之前A…

c语言文件操作(中)

目录 1. 文件的顺序读写1.1 顺序读写函数1.2 顺序读写函数的原型和介绍 结语 1. 文件的顺序读写 1.1 顺序读写函数 函数名功能适用于fgetc字符输入函数所有输出流fputc字符输出函数所有输出流fgets文本行输入函数所有输出流fputs文本行输出函数所有输出流fscanf格式化输入函数…