【100天精通python】Day23:正则表达式,基本语法与re模块详解示例

 目录

 专栏导读 

1 正则表达式概述

2 正则表达式语法

2.1 正则表达式语法元素

 2.2 正则表达式的分组操作

 3 re 模块详解与示例

4 正则表达式修饰符


专栏导读 

专栏订阅地址:https://blog.csdn.net/qq_35831906/category_12375510.html


1 正则表达式概述

        python 的正则表达式是什么,有哪些内容,有什么功能,怎么用?

        Python的正则表达式是一种用于处理字符串的强大工具,由re模块提供支持。正则表达式允许你根据特定模式来匹配、搜索、替换和提取文本数据。

正则表达式的基本组成包括:

  1. 字面字符:普通的字符,例如'a'、'b'等,它们直接匹配相应的字符。
  2. 元字符:具有特殊含义的字符,例如'.'匹配任意字符、'\d'匹配数字等。
  3. 限定符:用于指定模式的匹配次数,例如'*'匹配0次或多次、'+'匹配1次或多次等。
  4. 字符类:用于匹配一组字符中的任意一个字符,例如'[abc]'匹配'a'、'b'或'c'。
  5. 排除字符:在字符类中使用'^'来排除指定的字符。
  6. 转义字符:用于匹配特殊字符本身,例如使用'.'匹配实际的点号。

正则表达式在文本处理中有很多功能:

  • 模式匹配:查找字符串中是否包含特定的模式。
  • 文本搜索:在字符串中搜索匹配模式的第一个出现。
  • 查找所有:查找字符串中所有匹配模式的出现,并返回所有匹配结果的列表。
  • 分割:根据模式将字符串分割成多个部分。
  • 替换:将匹配模式的部分替换为指定的字符串。

以下是一个简单的使用正则表达式的示例:

import repattern = r'\d+'  # 匹配一个或多个数字
text = "There are 123 apples and 456 oranges."# 搜索
search_result = re.search(pattern, text)
if search_result:print("Found:", search_result.group())# 查找所有
findall_result = re.findall(pattern, text)
print(findall_result)  # Output: ['123', '456']

        上述代码中,re.search()函数搜索第一个匹配的数字,而re.findall()函数查找字符串中所有匹配的数字。

        使用正则表达式时,应当确保模式能够正确匹配目标文本,同时注意处理可能出现的异常情况。熟练掌握正则表达式,可以在文本处理中实现高效和灵活的匹配、搜索和替换操作

2 正则表达式语法

2.1 正则表达式语法元素

    行定位符、元字符、限定符、字符类、排除字符、选择字符和转义字符是正则表达式的基本组成部分,它们用于描述和匹配字符串的模式。

  1. 行定位符:

    • "^":匹配字符串的开头。
    • "$":匹配字符串的结尾。
  2. 元字符:

    • ".":匹配任意字符(除了换行符)。
    • "\d":匹配任意数字字符,等同于[0-9]
    • "\D":匹配任意非数字字符,等同于[^0-9]
    • "\w":匹配任意字母、数字或下划线字符,等同于[a-zA-Z0-9_]
    • "\W":匹配任意非字母、数字或下划线字符,等同于[^a-zA-Z0-9_]
    • "\s":匹配任意空白字符,包括空格、制表符、换行符等。
    • "\S":匹配任意非空白字符。
  3. 限定符:

    • "*":匹配前一个字符零次或多次。
    • "+":匹配前一个字符一次或多次。
    • "?":匹配前一个字符零次或一次。
    • "{n}":匹配前一个字符恰好n次。
    • "{n,}":匹配前一个字符至少n次。
    • "{n, m}":匹配前一个字符至少n次,但不超过m次。
  4. 字符类:

    • "[...]":匹配方括号内的任意一个字符。
    • "[^...]":匹配除方括号内的字符之外的任意一个字符。
  5. 排除字符:

    • "^":在字符类内使用,表示排除指定字符。
  6. 选择字符:

    • "|":逻辑或,匹配两个模式之一。
  7. 转义字符:

    • "\":用于转义特殊字符,使其失去特殊含义,例如\.匹配实际的点号

        这些元字符和特殊符号组合形成了正则表达式的模式,使得正则表达式可以描述非常复杂的字符串匹配规则。要使用正则表达式,你可以使用Python的re模块提供的函数进行匹配、搜索、替换等操作。熟悉这些基本元素有助于编写更加强大和灵活的正则表达式。

 示例:

import re# 行定位符
pattern1 = r'^Hello'  # 匹配以"Hello"开头的字符串
print(re.match(pattern1, "Hello, World!"))  # Output: <re.Match object; span=(0, 5), match='Hello'>pattern2 = r'World$'  # 匹配以"World"结尾的字符串
print(re.search(pattern2, "Hello, World!"))  # Output: <re.Match object; span=(7, 12), match='World'># 元字符
pattern3 = r'a.c'  # 匹配"a"、任意字符、"c"
print(re.search(pattern3, "abc"))  # Output: <re.Match object; span=(0, 3), match='abc'>
print(re.search(pattern3, "adc"))  # Output: <re.Match object; span=(0, 3), match='adc'>
print(re.search(pattern3, "a,c"))  # Output: <re.Match object; span=(0, 3), match='a,c'>pattern4 = r'ab*'  # 匹配"a"、"b"出现0次或多次
print(re.search(pattern4, "abbb"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern4, "ac"))  # Output: <re.Match object; span=(0, 0), match=''>pattern5 = r'ab+'  # 匹配"a"、"b"出现1次或多次
print(re.search(pattern5, "abbb"))  # Output: <re.Match object; span=(0, 4), match='abbb'>
print(re.search(pattern5, "ac"))  # Output: Nonepattern6 = r'ab?'  # 匹配"a"、"b"出现0次或1次
print(re.search(pattern6, "abbb"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern6, "ac"))  # Output: <re.Match object; span=(0, 0), match=''># 限定符
pattern7 = r'a{3}'  # 匹配"a"出现3次
print(re.search(pattern7, "aaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern7, "aaaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern7, "aa"))  # Output: Nonepattern8 = r'a{3,5}'  # 匹配"a"出现3次到5次
print(re.search(pattern8, "aaa"))  # Output: <re.Match object; span=(0, 3), match='aaa'>
print(re.search(pattern8, "aaaaa"))  # Output: <re.Match object; span=(0, 5), match='aaaaa'>
print(re.search(pattern8, "aaaaaa"))  # Output: <re.Match object; span=(0, 5), match='aaaaa'># 字符类和排除字符
pattern9 = r'[aeiou]'  # 匹配任意一个小写元音字母
print(re.search(pattern9, "apple"))  # Output: <re.Match object; span=(0, 1), match='a'>
print(re.search(pattern9, "banana"))  # Output: <re.Match object; span=(1, 2), match='a'>
print(re.search(pattern9, "xyz"))  # Output: Nonepattern10 = r'[^0-9]'  # 匹配任意一个非数字字符
print(re.search(pattern10, "hello"))  # Output: <re.Match object; span=(0, 1), match='h'>
print(re.search(pattern10, "123"))  # Output: None# 转义字符
pattern11 = r'\.'  # 匹配句号
print(re.search(pattern11, "www.example.com"))  # Output: <re.Match object; span=(3, 4), match='.'># 分组
pattern12 = r'(ab)+'  # 匹配"ab"出现1次或多次作为一个整体
print(re.search(pattern12, "ababab"))  # Output: <re.Match object; span=(0, 6), match='ababab'>

输出结果显示了匹配的子字符串的起始位置和结束位置,以及匹配的实际字符串内容。

常用元字符

常用限定符  

 2.2 正则表达式的分组操作

        在正则表达式中,分组是一种将多个子模式组合在一起并对其进行单独处理的机制。通过使用括号()来创建分组,可以实现更复杂的匹配和提取操作。

分组的作用包括:

  1. 优先级控制:可以使用分组来改变子模式的优先级,确保正确的匹配顺序。

  2. 子模式重用:可以对某个子模式进行命名,并在后续的正则表达式中引用这个名称,实现对同一模式的重用。

  3. 子模式提取:可以通过分组来提取匹配的子串,方便对其中的内容进行进一步处理。

示例:

import retext = "John has 3 cats and Mary has 2 dogs."# 使用分组提取匹配的数字和动物名称
pattern = r'(\d+)\s+(\w+)'  # 使用括号创建两个分组:一个用于匹配数字,另一个用于匹配动物名称
matches = re.findall(pattern, text)  # 查找所有匹配的结果并返回一个列表for match in matches:count, animal = match  # 将匹配结果拆分为两个部分:数字和动物名称print(f"{count} {animal}")# 使用命名分组
pattern_with_name = r'(?P<Count>\d+)\s+(?P<Animal>\w+)'  # 使用命名分组,给子模式指定名称Count和Animal
matches_with_name = re.findall(pattern_with_name, text)  # 查找所有匹配的结果并返回一个列表for match in matches_with_name:count = match['Count']  # 通过名称获取匹配结果中的数字部分animal = match['Animal']  # 通过名称获取匹配结果中的动物名称部分print(f"{count} {animal}")

 以上代码演示了如何使用分组提取正则表达式中匹配的子串。第一个正则表达式使用了普通分组,通过括号将数字和动物名称分别提取出来。第二个正则表达式使用了命名分组,通过(?P<Name>...)的语法形式给子模式指定了名称,从而在匹配结果中可以通过名称获取对应的子串。这样可以使代码更具可读性,方便后续对匹配结果的处理和使用。

上述代码报错如下

"TypeError: tuple indices must be integers or slices, not str" 这个错误意味着在代码中尝试使用字符串作为元组的索引,但元组的索引只能是整数或切片。

当使用元组的时候,需要用整数或切片来获取元组中的元素,如:my_tuple[0]my_tuple[1:3],这些是合法的索引方式。但如果你尝试使用字符串来索引元组中的元素,比如:my_tuple['key'],这就是不合法的,因为元组并没有与字符串索引相关联的键值对。

更正:用 re.finditer()替代第二个 re.findall(),用match.group()获取匹配结果中的内容。

更正后代码:

import retext = "John has 3 cats and Mary has 2 dogs."# 使用分组提取匹配的数字和动物名称
pattern = r'(\d+)\s+(\w+)'  # 使用括号创建两个分组:一个用于匹配数字,另一个用于匹配动物名称
matches = re.findall(pattern, text)  # 查找所有匹配的结果并返回一个列表for match in matches:count, animal = match  # 将匹配结果拆分为两个部分:数字和动物名称print(f"{count} {animal}")# 使用命名分组
pattern_with_name = r'(?P<Count>\d+)\s+(?P<Animal>\w+)'  # 使用命名分组,给子模式指定名称Count和Animal
matches_with_name = re.finditer(pattern_with_name, text)  # 使用re.finditer()查找所有匹配的结果for match in matches_with_name:count = match.group('Count')  # 通过名称获取匹配结果中的数字部分animal = match.group('Animal')  # 通过名称获取匹配结果中的动物名称部分print(f"{count} {animal}")

注: 

 

re.findall()re.finditer()都是Python中用于正则表达式匹配的函数,它们的区别在于返回的结果类型不同。

  1. re.findall(pattern, string): findall函数会返回所有与正则表达式pattern匹配的结果,并将它们以列表的形式返回。每个匹配结果将作为一个字符串元素存储在列表中。如果正则表达式中有分组,findall只会返回分组中的内容而不返回完整的匹配结果。

  2. re.finditer(pattern, string): finditer函数也会返回所有与正则表达式pattern匹配的结果,但不同于findallfinditer返回的是一个迭代器。每个迭代器对象代表一个匹配结果,可以通过迭代器的group()方法来获取匹配结果中的内容。如果正则表达式中有分组,可以使用group()方法来访问各个分组的内容。

总结起来,re.findall()返回一个列表,而re.finditer()返回一个迭代器。如果需要处理多个匹配结果,使用finditer更加灵活和高效,因为它不会一次性返回所有匹配结果,而是在需要时按需提供。

 

3 re 模块详解与示例

   re模块是Python中用于处理正则表达式的内置模块,提供了一系列函数来进行字符串匹配、搜索、替换和分割等操作。以下是re模块的主要函数:

  1. re.compile(pattern, flags=0): 编译正则表达式模式,返回一个正则表达式对象。如果要多次使用相同的正则表达式,可以使用这个函数预编译,提高性能。

  2. re.match(pattern, string, flags=0): 尝试从字符串的开头开始匹配模式,如果匹配成功,则返回匹配对象;否则返回None。

  3. re.search(pattern, string, flags=0): 在整个字符串中搜索匹配模式的第一个出现,如果匹配成功,则返回匹配对象;否则返回None。

  4. re.findall(pattern, string, flags=0): 查找字符串中所有匹配模式的出现,返回所有匹配结果的列表。

  5. re.finditer(pattern, string, flags=0): 查找字符串中所有匹配模式的出现,返回一个迭代器,可以通过迭代器获取匹配对象。

  6. re.split(pattern, string, maxsplit=0, flags=0): 根据模式将字符串分割成多个部分,并返回一个列表。

  7. re.sub(pattern, replacement, string, count=0, flags=0): 将匹配模式的部分替换为指定的字符串,并返回替换后的字符串。

在上述函数中,pattern是正则表达式的模式,string是要进行匹配或处理的字符串,flags是可选参数,用于指定正则表达式的修饰符。其中,flags参数可以使用多个修饰符进行组合,例如使用re.IGNORECASE | re.MULTILINE来指定忽略大小写和多行匹配。

以下示例展示了re模块中各种函数的使用,并涵盖了匹配、搜索、替换、分割、命名分组等功能:

import retext = "John has 3 cats, Mary has 2 dogs."# 使用re.search()搜索匹配模式的第一个出现
pattern_search = r'\d+\s+\w+'
search_result = re.search(pattern_search, text)
if search_result:print("Search result:", search_result.group())  # Output: "3 cats"# 使用re.findall()查找所有匹配模式的出现,并返回一个列表
pattern_findall = r'\d+'
findall_result = re.findall(pattern_findall, text)
print("Find all result:", findall_result)  # Output: ['3', '2']# 使用re.sub()将匹配模式的部分替换为指定的字符串
pattern_sub = r'\d+'
replacement = "X"
sub_result = re.sub(pattern_sub, replacement, text)
print("Sub result:", sub_result)  # Output: "John has X cats, Mary has X dogs."# 使用re.split()根据模式将字符串分割成多个部分
pattern_split = r'\s*,\s*'  # 匹配逗号并去除前后空格
split_result = re.split(pattern_split, text)
print("Split result:", split_result)  # Output: ['John has 3 cats', 'Mary has 2 dogs.']# 使用命名分组
pattern_named_group = r'(?P<Name>\w+)\s+has\s+(?P<Count>\d+)\s+(?P<Animal>\w+)'
matches_with_name = re.finditer(pattern_named_group, text)
for match in matches_with_name:name = match.group('Name')count = match.group('Count')animal = match.group('Animal')print(f"{name} has {count} {animal}")# 使用re.compile()预编译正则表达式
pattern_compile = re.compile(r'\d+')
matches_compiled = pattern_compile.findall(text)
print("Compiled findall result:", matches_compiled)  # Output: ['3', '2']

 上述示例展示了使用re模块进行正则表达式的匹配、搜索、替换、分割和命名分组的功能。注释说明了每个步骤的作用和预期输出,通过合理使用正则表达式,可以快速实现对字符串的复杂处理需求。

4 正则表达式修饰符

        在Python的正则表达式中,修饰符(也称为标志或模式标志)是一些可选参数,它们可以在编译正则表达式时传递给re.compile()函数或直接在正则表达式字符串中使用,用于改变匹配的行为。

        以下是常用的正则表达式修饰符:

  1. re.IGNORECASEre.I: 忽略大小写匹配。使用该修饰符后,可以在匹配时忽略大小写的差异。

  2. re.MULTILINEre.M: 多行匹配。使用该修饰符后,^$分别匹配字符串的开头和结尾,还可以匹配字符串中每一行的开头和结尾(每行以换行符分隔)。

  3. re.DOTALLre.S: 单行匹配。使用该修饰符后,.将匹配包括换行符在内的任意字符。

  4. re.ASCIIre.A: 使非ASCII字符只匹配其对应的ASCII字符。例如,\w将只匹配ASCII字母、数字和下划线,而不匹配非ASCII字符。

  5. re.UNICODEre.U: 使用Unicode匹配。在Python 3中,默认情况下正则表达式使用Unicode匹配。

  6. re.VERBOSEre.X: 使用“可读性更好”的正则表达式。可以在表达式中添加注释和空格,这样可以使正则表达式更易读。

在Python中,正则表达式修饰符(也称为标志)是可选的参数,用于调整正则表达式的匹配行为。修饰符可以在正则表达式模式的末尾添加,以影响模式的匹配方式。以下是常用的正则表达式修饰符:

下面通过示例来演示这些修饰符的用法:

import re# 不区分大小写匹配
pattern1 = r'apple'
text1 = "Apple is a fruit."
match1 = re.search(pattern1, text1, re.I)
print(match1.group())  # Output: "Apple"# 多行匹配
pattern2 = r'^fruit'
text2 = "Fruit is sweet.\nFruit is healthy."
match2 = re.search(pattern2, text2, re.M)
print(match2.group())  # Output: "Fruit"# 点号匹配所有字符
pattern3 = r'apple.*orange'
text3 = "apple is a fruit.\noranges are fruits."
match3 = re.search(pattern3, text3, re.S)
print(match3.group())  # Output: "apple is a fruit.\noranges"# 忽略空白和注释
pattern4 = r'''apple # This is a fruit\s+   # Match one or more whitespace charactersis    # followed by "is"\s+   # Match one or more whitespace charactersa     # followed by "a"\s+   # Match one or more whitespace charactersfruit # followed by "fruit"'''
text4 = "Apple is a fruit."
match4 = re.search(pattern4, text4, re.X)
print(match4.group())  # Output: "apple is a fruit"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/55500.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL系统数据库及常用工具指令介绍

文章目录 1.系统数据库2.常用工具2.1 -e指令2.2 mysqladmin指令2.3 mysqlbinlog指令2.4 mysqlshow指令2.5 mysqldump指令 数据备份2.6 mysqlimport/source 指令 数据导入 3.指令小结 1.系统数据库 2.常用工具 2.1 -e指令 不用登陆mysql直接执行脚本命令 mysql -h192.168.200.…

如何使用大模型处理生活繁琐的工作

如果每封电子邮件、每个带有订单、发票、投诉、录用请求或工作申请的 PDF 都可以翻译成机器可读的数据&#xff0c;会怎样&#xff1f;然后可以由 ERP / CRM / LMS / TMS 自动处理吗&#xff1f;无需编程特殊接口。 听起来很神奇&#xff1f;它确实有一些魔力。但最近已成为可…

Xposed框架开发

文章目录 xpose插件开发步骤清单文件新建一个类&#xff08;插件入口点&#xff09;设置入口点 Hook第一个实例zhuceji.apk一些常用的HOOKHookH5PluginHookProxyPluginHookSystem 资料Xposed原理初探 xpose插件开发步骤 magisk安装与配置 Xpose Framework API LSPosed magisk …

02_kafka_基本概念_基础架构

文章目录 常见的消息队列工作模式基本概念kafka 特性Kafka 基本架构topic 分区的 目的/ 好处 日志存储形式消费者&#xff0c;消费方式 逻辑消费组 高性能写入&#xff1a; 顺序写 mmap读取&#xff1a;零拷贝DMA 使用场景 常见的消息队列工作模式 至多一次&#xff1a;消息被…

【iOS】json数据解析以及简单的网络数据请求

文章目录 前言一、json数据解析二、简单的网络数据请求三、实现访问API得到网络数据总结 前言 近期写完了暑假最后一个任务——天气预报&#xff0c;在里面用到了简单的网络数据请求以及json数据的解析&#xff0c;特此记录博客总结 一、json数据解析 JSON是一种轻量级的数据…

FFmpeg常见命令行(二):FFmpeg转封装

前言 在Android音视频开发中&#xff0c;网上知识点过于零碎&#xff0c;自学起来难度非常大&#xff0c;不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》。本文是Android音视频任务列表的其中一个&#xff0c; 对应的要学习的内容是&#xff1a;如何使…

基于C#的应用程序单例唯一运行的完美解决方案 - 开源研究系列文章

今次介绍一个应用程序单例唯一运行方案的代码。 我们知道&#xff0c;有些应用程序在操作系统中需要单例唯一运行&#xff0c;因为程序多开的话会对程序运行效果有影响&#xff0c;最基本的例子就是打印机&#xff0c;只能运行一个实例。这里将笔者单例运行的代码共享出来&…

【频率派和贝叶斯派】进阶学习-贝叶斯方法原理、基本结构、代码构建+图模型

文章目录 前言1.理论支撑贝叶斯思考模式贝叶斯定理贝叶斯公式 2. 应用转化2.1 拼写检查 3. 贝叶斯网络3.1 贝叶斯网络的定义3.2 三个形式和实际案例的构建关系 前言 频率派与贝叶斯派各自不同的思考方式&#xff1a; 1.频率派把需要推断的参数θ看做是固定的未知数&#xff0c…

Ubuntu安装git

使用 apt-get install git 安装git 报错&#xff1a; 这个错误信息通常表示您的系统上没有可用的 git 软件包。这可能是因为您的软件源列表中没有包含 git 软件包所在的软件源&#xff0c;或者您的软件源列表已经过期。 解决&#xff1a; 如果您使用的是 Ubuntu 或类似…

(十二)大数据实战——hadoop集群之HDFS高可用自动故障转移

前言 本节内容主要介绍一下hadoop集群下实现HDFS高可用的自动故障转移&#xff0c;HDFS高可用的自动故障转移主要通过zookeeper实现故障的监控和主节点的切换。自动故障转移为 HDFS 部署增加了两个新组件&#xff1a;ZooKeeper 和 ZKFailoverController &#xff08;ZKFC&…

【Python】Pandas 简介,数据结构 Series、DataFrame 介绍,CSV 文件处理,JSON 文件处理

序号内容1【Python】Pandas 简介&#xff0c;数据结构 Series、DataFrame 介绍&#xff0c;CSV 文件处理&#xff0c;JSON 文件处理2【Python】Pandas 数据清洗操作&#xff0c;常用函数总结 文章目录 1. Pandas 简介2. Pandas 数据结构1. Series&#xff08;一维数据&#xff…

【LeetCode】24.两两交换链表中的节点

题目 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4] 输出&#xff1a…