【数据分析案列】--- 北京某平台二手房可视化数据分析

一、引言

本案列基于北京某平台的二手房数据,通过数据可视化的方式对二手房市场进行分析。通过对获取的数据进行清冼(至关重要),对房屋价格、面积、有无电梯等因素的可视化展示,我们可以深入了解北京二手房市场的特点和趋势,为购房者和投资者提供有价值的信息和参考。

为了实现这个目标,我们将使用Python编程语言及其相关的数据分析库,包括pandas、matplotlib、seaborn和pyecharts。这些库提供了丰富的功能和工具,使我们能够对数据进行处理、分析和可视化。

二、数据探索和清冼

进行数据探索和清冼的目的主要是因为数据来源并不是官方的,数据中往往存在一些异常情况,这些异常的情况会导致我们分析的结果出现大量的偏差,所以我们需要对爬取的北京二手房数据进行探索的清冼,数据集下载地址:https://download.csdn.net/download/qq_38614074/89017277
废话不多说直接上代码:

  • 1、导入数据探索清冼需要的库
import pandas as pd
  • 2、导入数据进行数据整体的探索
data = pd.read_csv("二手房数据.csv",encoding = 'gb18030')#查看数据的维度
data.shape
#打印数据的前5行
data.head()

在这里插入图片描述

data.info()

在这里插入图片描述
对数据进行整体的探索,我们发现数据集中"11 Unnamed"列好像都是空值,Id列在后续的分析中也使用不到,故后续需要将这两列进行删除; 并且电梯列中有比较多的缺失值,数据中可以看到电梯有8255条数据缺失记录,后续需要进行清冼;

  • 3、数据中字段级别的数据探索
    后续的分析主要是对数据中的一些字段进行可视化分析,所以需要查看不同维度的数据中是否存在一些异常情况(不应该出现出现的情况)

  • 3.1 市区字段分析

data['市区'].value_counts() 

在这里插入图片描述
分析: 在市区列中,存在异常值[‘15’, ‘有电梯’, ‘京师吉地’],且量非常少,不影响这个数据分析,后续需要将这些数据所在的行数据进行删除;

  • 3.2 户型字段分析
 data['户型'].unique()  

在这里插入图片描述
分析:通过unique()我们发现,后续的处理中我们需要房间替换成室,保证数据的一致性,并需要将一些非户型类型的描述给删除,这里主要包括[‘叠拼别墅’,‘有电梯’, ‘京师吉地’]等户型列中的异常值;

  • 3.3 其它字段的分析
# 小区
len(data['小区'].unique()) 
#电梯
data['电梯'].value_counts()
#朝向
data['朝向'].unique()
#楼层
data['楼层'].unique() 
#装修情况
data['装修情况'].value_counts()
#面积
data['面积(㎡)'].unique()
#年份
data['年份'].unique()

分析:
1、小区列中的字段数据过多,此次不在处理,此份数据对分析结果无影响;
2、电梯列中缺失值比较多,后续将列中的数据不是’有电梯’ or’无电梯’的情况全部替换成’未知‘;
3、朝向列中将[‘97’,‘有电梯’,‘京师吉地’]异常值所在的行进行删除;
4、楼层列中将[‘490’, ‘房山’, ‘精装’, ‘朝阳’, ‘有电梯’, ‘京师吉地’]异常值所在的行进行删除;
5、装修情况列中将[‘无电梯’,‘2013’,‘丽水嘉园’,‘长阳国际城三区’,‘有电梯’,‘京师吉地’]异常数据所在的行进行删除;
6、年份列中将[‘1.01E+11’,‘其他’,‘精装’, ‘西南’,‘22’,‘有电梯’, ‘京师吉地’]异常数据所在的行进行删除;
7、面积(㎡)列中将包含中文的行进行删除;
8、价格(万元)列中将[‘光明西里’]异常数据所在的行进行删除;

  • 4、编写最终的清冼代码
    根据上面的分析,编写对应的代码如下
# clean步骤
# 删除指定的列   ['Unnamed: 11', 'Id']
data = data.drop(['Unnamed: 11', 'Id'], axis=1) def remove_outlies(data,col_name='楼层',to_remove = ['490', '房山']):mask = data[col_name].isin(to_remove)  data = data[~mask] return data# 市区列中异常值清冼
data = remove_outlies(data,'市区',['15', '有电梯', '京师吉地'])    
# 电梯列中的数据清冼
data['电梯'] = data['电梯'].apply(lambda x:x if (x=='有电梯' or x=='无电梯') else '未知')  
# 户型列中的数据清冼
data['户型'] = data['户型'].apply(lambda x:x.replace("房间",'室'))
data = remove_outlies(data,'户型',['叠拼别墅','有电梯', '京师吉地'])
# 朝向列中的数据清冼
data = remove_outlies(data,'朝向',['97','有电梯','京师吉地'])
# 楼层列中的数据清冼
data = remove_outlies(data,'楼层',['490', '房山', '精装', '朝阳', '有电梯', '京师吉地'] )
# 装修情况列中的数据清冼
data = remove_outlies(data,'装修情况',['无电梯','2013','丽水嘉园','长阳国际城三区','有电梯','京师吉地'])
# 年份列中的数据清冼
data = remove_outlies(data,'年份',['1.01E+11','其他','精装', '西南','22','有电梯', '京师吉地'])# 面积(㎡)列中的数据清冼
def contains_chinese(s):  if isinstance(s, str):  return any('\u4e00' <= c <= '\u9fff' for c in s)  return False  mask = data['面积(㎡)'].apply(contains_chinese) 
data = data[~mask]  data = remove_outlies(data,'价格(万元)',['光明西里'])
  • 5 将清洗后的数据保存
    将清冼后的数据进行保存,方便后续的分析,不用再重新进行数据的清冼;清冼后的数据下载地址:https://download.csdn.net/download/qq_38614074/89017277
    data.to_csv(‘clean_data.csv’,index=False,encoding=‘utf-8-sig’)

三、数据分析和可视化

在这一部分,你可以逐步介绍你对数据进行的分析和可视化的过程。你可以展示一些关键的图表和图形,并解释它们背后的含义和发现。

加载绘图需要的库:

import pandas as pd
from pyecharts.charts import Map
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Grid
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from pyecharts.charts import Geoimport matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体:解决plot不能显示中文问题
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

导入清冼后的数据:
data = pd.read_csv(‘clean_data.csv’)
data.describe()
在这里插入图片描述
图中显示北京二手房平均平均总价 609万,平均年份2001年,平均楼层 12-13 层,平均房屋面积 99 m²。另还有标准差、最小值、四分之一分位数、二分之一分位数、四分之三分位数、最大值等信息。
下面从几个点上进行数据可视化:

  • 1)各区二手房数量条形图 ,获取数据中各区信息和对应区的房屋数量,绘制条形图
region_list = data['市区'].value_counts().index.tolist()
house_count_list = data['市区'].value_counts().values.tolist()c = Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
c.add_xaxis(region_list)
c.add_yaxis("北京市", house_count_list)
c.set_global_opts(title_opts=opts.TitleOpts(title="北京各区二手房数量柱状图", subtitle=""),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(interval=0)))
# c.render("武汉各区二手房数量柱状图.html")
c.render_notebook()

在这里插入图片描述

    1. 北京各个城区二手房价格地图分布
zone_median = data.groupby(['市区'])['价格(万元)'].median()
c = (Geo().add_schema(maptype='北京',itemstyle_opts=opts.ItemStyleOpts(color='#A60B63',border_color='#FFFF22')).add("",[list(z) for z in zip(zone_median.keys().tolist(),zone_median.tolist())]).set_series_opts(label_opts=opts.LabelOpts(is_show=False)).set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=280,max_=720),title_opts=opts.TitleOpts(title="北京各个城区二手房平均价格(万元)", subtitle=""),)
)
c.render_notebook()

在这里插入图片描述

    1. 各区二手房单价箱型图
      统计各区名称信息及对应单价信息,并绘制箱型图。

统计各个区二手房单价信息

unit_price_list = []
for region in region_list:unit_price_list.append(data.loc[data['市区'] == region, '价格(万元)'].values.tolist())# 绘制箱型图
from pyecharts.charts import Boxplotc = Boxplot(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
c.add_xaxis(region_list)
c.add_yaxis("北京市", c.prepare_data(unit_price_list))
c.set_global_opts(title_opts=opts.TitleOpts(title="北京各区二手房总价箱型图"), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(interval=0)))
# c.render("boxplot_base.html")
c.render_notebook()

在这里插入图片描述

    1. 二手房面积分布与价格关系图
f, [ax1,ax2] = plt.subplots(1, 2, figsize=(16, 6))# 房屋面积
sns.distplot(data['面积(㎡)'], ax=ax1, color='r')
sns.kdeplot(data['面积(㎡)'], shade=True, ax=ax1)
ax1.set_xlabel('面积')# 房屋面积和价格的关系
sns.regplot(x='面积(㎡)', y='价格(万元)', data=data, ax=ax2)
ax2.set_xlabel('面积')
ax2.set_ylabel('总价')plt.show()

在这里插入图片描述

    1. 房屋朝向饼状图
d = data.groupby('朝向')
direction = d.count()['小区']
direction

在这里插入图片描述

from pyecharts.charts import Piec = (Pie().add("",[list(z) for z in zip(direction.keys().tolist(),direction.values.tolist())],radius=["30%", "75%"],).set_global_opts(title_opts=opts.TitleOpts(title="房屋朝向比"),legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c} ({d}%)"))
)
c.render_notebook()

在这里插入图片描述
- 6) 各户型横向条形图

series = data['户型'].value_counts()
series.sort_index(ascending=False, inplace=True)
house_type_list = series.index.tolist()
count_list = series.values.tolist()c = Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
c.add_xaxis(house_type_list)
c.add_yaxis("北京市", count_list)
c.reversal_axis()
c.set_series_opts(label_opts=opts.LabelOpts(position="right"))
c.set_global_opts(title_opts=opts.TitleOpts(title="北京二手房各户型横向条形图"),datazoom_opts=[opts.DataZoomOpts(yaxis_index=0, type_="slider", orient="vertical")],)
#c.render("北京二手房各户型横向条形图.html")
c.render_notebook()

在这里插入图片描述

    1. 房屋装修程度饼状图
decoration_list = data['装修情况'].value_counts().index.tolist()
count_list = data['装修情况'].value_counts().values.tolist()from pyecharts.charts import Piec = Pie(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
c.add(series_name="房屋装修",data_pair=[list(z) for z in zip(decoration_list, count_list)],rosetype="radius",radius="55%",center=["50%", "50%"],label_opts=opts.LabelOpts(is_show=False, position="center"))
c.set_global_opts(title_opts=opts.TitleOpts(title="北京二手房房屋装修饼状图",pos_left="center",pos_top="20",title_textstyle_opts=opts.TextStyleOpts(color="#fff")),legend_opts=opts.LegendOpts(is_show=False))
c.set_series_opts(tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"),label_opts=opts.LabelOpts(color="rgba(255, 255, 255, 255)"))
# c.render("customized_pie.html")
c.render_notebook()

在这里插入图片描述

    1. 房屋面积分布柱状图
area_level = [0, 50, 100, 150, 200, 250, 300, 350, 400, 1500]
label_level = ['50-100','100-150','150-200','200-250','250-300','300-350','350-400','400-450']
p1 = pd.cut(data['面积(㎡)'],area_level,label_level)
p2 = p1.value_counts()
p3 = p2.values.tolist()
p3
[13647, 5808, 1675, 1561, 541, 217, 93, 54, 53]
c = (Bar().add_xaxis(label_level).add_yaxis("面积(㎡)",p3,color="#7944B7").reversal_axis().set_series_opts(label_opts=opts.LabelOpts(position='right')).set_global_opts(title_opts=opts.TitleOpts(title="房屋面积分布柱状图"),xaxis_opts=opts.AxisOpts(name='数量'),yaxis_opts=opts.AxisOpts(name='面积(㎡)'))
)
c.render_notebook()

在这里插入图片描述

    1. 楼层的分布
 sns.distplot(data['楼层'],color='r')

在这里插入图片描述

    1. 北京市二手房有无电梯的关系(柱状图)和有无电梯和房价的关系(折线图)
df = data[data['电梯']!='未知']sns.barplot(x="市区", y="价格(万元)", hue="电梯", data=df)

在这里插入图片描述
sns.lineplot(x=“市区”, y=“价格(万元)”, hue=“电梯”, data=df)
在这里插入图片描述

    1. 出售房数大于15间且房价均值Top10的小区
df = data['小区'].value_counts().reset_index()  #data['小区']value_counts的结果转成dataframe
df1 = data.groupby(['小区'])['价格(万元)'].mean().reset_index()
df = df.merge(df1,on=['小区'],how='left')
# 筛选出计数大于15的小区  
filtered_counts = df[df['count'] >= 15] 
sorted_counts = filtered_counts.sort_values(by='价格(万元)',ascending=False)[:10]
sorted_counts

在这里插入图片描述
sns.barplot(x=‘小区’,y=‘价格(万元)’,data=sorted_counts)
在这里插入图片描述
本文完整代码下载地址:https://download.csdn.net/download/qq_38614074/89017277

总结:
通过对北京某平台二手房数据的可视化分析,我们可以得出以下结论:

北京二手房市场的价格呈现出明显的分布特点,不同价格区间的房屋数量和价格水平存在差异。

房屋面积在北京二手房市场中也存在一定的分布特点,不同面积区间的房屋数量和面积大小有所差异。

北京各区域的二手房分布不均,一些热门区域的房源较多,价格也相对较高。

这些分析结果可以为购房者提供有价值的信息和参考,帮助他们更好地了解市场情况,做出明智的购房决策。同时,对于投资者来说,这些数据分析也可以提供市场趋势和投资机会的线索。

需要注意的是,本文仅基于某平台的二手房数据进行分析,可能存在一定的局限性。在实际购房或投资决策中,还应综合考虑其他因素,如房屋质量、交通便利性、配套设施等。

通过数据可视化的方式,我们可以更直观地了解和分析二手房市场的情况,为决策者提供更全面的信息支持。希望本文的分析结果对读者有所启发,并在购房或投资过程中起到一定的指导作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/562769.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS-枚举说明

说明&#xff1a; 本模块首批接口从API version 7开始支持&#xff0c;后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 Color 从API version 9开始&#xff0c;该接口支持在ArkTS卡片中使用。 颜色名称颜色值颜色示意Black0x000000 Blue0x0000ff Brown…

大模型+强化学习_利用AI反馈扩展强化学习_RLAIF

1 2 3 4 5 6英文名称: RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback 中文名称: RLAIF&#xff1a;利用AI反馈扩展强化学习 链接: http://arxiv.org/abs/2309.00267v2 作者: Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Jo…

链表合并--给定两个元素有序(从小到大)的链表,要求将两个链表合并成一个有序(从小到大)链表,

输入描述: 第一行输入第一个链表的结点数S1&#xff0c;S1<100。 第二行输入S1个整数&#xff0c;两两之间用空格隔开。 第三行输入第二个链表的结点数S2&#xff0c;S2<100。 第四行输入S2个整数&#xff0c;两两之间用空格隔开。 输出描述: 输出合并之后的链表结果&…

在MongoDB建模1对N关系的基本方法

“我在 SQL 和规范化数据库方面拥有丰富的经验&#xff0c;但我只是 MongoDB 的初学者。如何建立一对 N 关系模型&#xff1f;” 这是我从参加 MongoDB 分享日活动的用户那里得到的最常见问题之一。 我对这个问题没有简短的答案&#xff0c;因为方法不只有一种&#xff0c;还有…

如何使用OpenHarmony实现一个模拟应用首次启动

应用首次启动&#xff08;ArkTS&#xff09; 介绍 本篇Codelab基于自定义弹框、首选项和页面路由实现一个模拟应用首次启动的案例。需要完成以下功能&#xff1a; 实现四个页面&#xff0c;启动页、隐私协议页、广告页、应用首页。页面之间的跳转。实现自定义隐私协议弹窗&a…

是德科技N9020A信号分析仪

181/2461/8938产品概述&#xff1a; N9020A MXA信号分析仪通过增加针对新一代技术的信号分析和频谱分析能力&#xff0c;具备了中档分析仪的更高性能。它突破了以往分析仪的极限&#xff0c;支持业界更快的信号和频谱分析,实现了速度与性能的更佳优化。 速度 测试速度超过其它…

IAB欧洲发布首张泛欧洲数字零售媒体能力矩阵图

2024年1月18日&#xff0c;互动广告署-欧洲办事处&#xff08;IAB Europe)发布了首张泛欧洲数字零售媒体能力矩阵图。为媒体买家提供的新资源概述了在欧洲运营的零售商提供的现场、场外和数字店内零售媒体广告机会。 2024年1月18日&#xff0c;比利时布鲁塞尔&#xff0c;欧洲领…

docker 和K8S知识分享

docker知识&#xff1a; 比如写了个项目&#xff0c;并且在本地调试没有任务问题&#xff0c;这时候你想在另外一台电脑或者服务器运行&#xff0c;那么你需要在另外一台电脑或者服务器配置相同的软件&#xff0c;比如数据库&#xff0c;web服务器&#xff0c;必要的插件和库等…

【SysBench】OLTP 基准测试示例

前言 本文采用 MySQL 沙盒实例作为测试目标&#xff0c;使用 sysbench-1.20 对其做 OLTP 基准测试。 有关 MySQL 沙盒的更多信息&#xff0c;请参阅 玩转 MySQL Shell 沙盒实例&#xff0c;【MySQL Shell】6.8 AdminAPI MySQL 沙盒 。 1、部署一个 MySQL 沙盒实例 使用 mysq…

JVM本地方法

本地方法接口 NAtive Method就是一个java调用非java代码的接口 本地方法栈&#xff08;Native Method Statck&#xff09; Java虚拟机栈用于管理Java方法的调用&#xff0c;而本地方法栈用于管理本地方法的调用。 本地方法栈&#xff0c;也是线程私有的。 允许被实现成固定或…

jmeter超高并发报错解决方法

1、比如jmeter设置并发量为5000&#xff0c;运行后报错socket closed。原因是客户端与服务端做了三次握手之后&#xff0c;后面不需要握手了&#xff0c;但是jmeter没有这个功能&#xff0c;5000个并发每次发接口请求都是独立的&#xff0c;jmeter端口处理不了这么大量的请求&a…

tcp 协议详解

什么是 TCP 协议 TCP全称为 “传输控制协议(Transmission Control Protocol”). 人如其名, 要对数据的传输进行一个详细的控制。TCP 是一个传输层的协议。 如下图&#xff1a; 我们接下来在讲解 TCP/IP 协议栈的下三层时都会先解决这两个问题&#xff1a; 报头与有效载荷如何…