数据结构/C++:哈希表

数据结构/C++:哈希表

    • 哈希表概念
    • 哈希函数
      • 直接定址法
      • 除留余数法
    • 哈希冲突
      • 闭散列 - 开放定址法
        • 基本结构
        • 查找
        • 插入
        • 删除
        • 总代码展示
      • 开散列 - 哈希桶
        • 基本结构
        • 查找
        • 插入
        • 删除
        • 代码展示


哈希表概念

在顺序表中,查找一个数据的时间复杂度为O(N);在平衡树这种树形结构中,查找一个数据的时间复杂度为O( log ⁡ N \log_{}{N} logN )。尽管平衡树的搜索已经很优秀了,但是我们理想中的搜索方法是不经过任何比较,一次直接从数据结构中拿到想要的元素,也就是把搜索的复杂度优化为O(1)。这看似天方夜谭,但是哈希表可以做到,本博客就讲解哈希表,以及它的多种实现方案。

如果某个字符串中只有小写字母a-z,请你统计所有字母出现的次数。你会怎么做?

我们可以创建一个长为26的数组arr,然后让a对应arr[0],b对应arr[1]以此类推,每个位置都对应一个字母,然后遍历一遍字符串。假设当前字母为i,按照转换规则:arr[i - 'a']++进行转换。

其实这就是一个哈希表的思想,我们把数据a - z通过i - 'a'这个映射关系转化为了一个数字,然后再把对应的数组下标赋予对应的意义。此时这个数组就是一个哈希表。

所以哈希表可以简单理解为:把数据转化为数组的下标,然后用数组的下标对应的值来表示这个数据。如果我们想要搜索这个数据,直接计算出这个数据的下标,然后就可以直接访问数组对应的位置,所以可以用O(1)的复杂度直接找到数据。

其中,这个数据对应的数字叫做关键码(Key),这个把关键码转化为下标的规则,叫做哈希函数(Hash)

要注意的是,有一些数据并不是整型,比如字符串,对象等等。对于这种数据,我们要先用一套规则把它们转化为整数(关键码),然后再通过哈希函数映射为数组下标。


哈希函数

哈希函数原则:

  1. 哈希函数转换后,生成的地址(下标)必须小于哈希表的最大地址(下标)
  2. 哈希函数计算出来的地址(下标)必须均匀地分布
  3. 哈希函数尽可能简单

接下来我们看一些常见的哈希函数:

直接定址法

取关键字的某个线性函数为哈希表的地址:

Hash (Key)  = A × Key  + B \text { Hash (Key) }=A × \text { Key }+B  Hash (Key) =A× Key +B

这种哈希函数特点就是简单,均匀。但是由于我们没有限制这个地址的范围,其有可能对数组越界访问,所以要提前知道数据的范围

比如我们刚刚通过字母的ASCII码直接减去a的ASCII码的过程,就是一个直接定址过程。在这之前,我们知道小写字母只有26个,所以没有发生越界访问。

这种哈希函数在一些数据简单的算法题中高频使用

除留余数法

假设哈希表的地址数目为m,取Keym取模后得到的值作为下标

Hash (Key)  = K e y % m \text { Hash (Key) }=\text Key\ \% \ m  Hash (Key) =Key % m

该方法通过取模,简单地把地址控制在了目标范围内,STL库中使用的就是这种方法,本博客后续也使用这种方法。

此外还有一些哈希函数,但是都不常用了,此处不做讲解了。


哈希冲突

现在我们采用除留余数法作为哈希函数,我们尝试对一个长度为10的哈希表插入值:

在这里插入图片描述
其哈希函数为:
Hash (Key)  = K e y % 10 \text { Hash (Key) }=\text Key\ \% \ 10  Hash (Key) =Key % 10

现在我们插入1815124四个数字:
在这里插入图片描述

根据哈希函数的规则,我们把这四个数字映射到了合适的位置。现在我们载插入数字14,你会发现14 % 10 = 4,但是下标为4的位置已经被124占用了,这该怎么办?

这种多个数据占用一个位置的情况,叫做哈希冲突,解决哈希冲突有两种方法,分别是闭散列和开散列,我们现在就讲解两种方案,以及对应哈希表的实现方法。


闭散列 - 开放定址法

闭散列,也叫做开放定址法,当发生哈希冲突时,如果哈希表没有被装满,说明哈希表中还有空位置,那么我们可以把发生冲突的数据放到下一个空位置去。

比如在刚刚的情况中,我们插入14,发现下标为4的位置被占用了,于是到下标为5的位置,发现下标为5的位置也被占用了,于是到下标为6的位置。最后就插入下标6的位置:

在这里插入图片描述

当我们查找14的时候,先通过哈希函数计算出下标为4,然后发现哈希表中下标为4的位置不是14,于是向后查找,发现下标为5的位置不是14,再往后查找,发现14在下标为6的位置。

再比如,我们查找44的时候,先通过哈希函数计算出下标为4,然后发现哈希表中下标为4的位置不是44,于是向后查找,发现下标为5的位置不是44,再往后查找,发现下标为6的位置不是44,再向后查找,发现下标为7的位置没有数据了,于是推断出44数据不存在于哈希表中。

基本结构

首先我们需要一个枚举,来标识哈希表的不同状态:

enum State
{EMPTY,EXIST,DELETE
};

EMPTY:空节点
EXIST:数值存在
DELETE:数值被删除

为什么要这样标识节点呢?
我们看到以下情况:
在这里插入图片描述

现在我们将15这个数据从哈希表中删除,其面临着两个问题:

  1. 删除后,应该替换为什么数据?如果我们替换后的数据与插入的数据冲突怎么办?

因此我们不能直接替换来删除一个数据,而是用一个额外的变量来标识状态:EMPTY空,EXIST存在。

现在我们删除后试试看:
在这里插入图片描述
现在我们面临第二个问题:

  1. 我们删除节点后,会面临原本连续的数据被截断的问题。如果我们现在要查找数据14,其会从下标为4的位置开始查找,但是查找到下标为5的位置发现没有数据了,于是停止查找。

这个过程中,由于删除后的数据被标识为EMPTY,此时查找就发生了问题,因此我们要把删除DELETE和空EMPTY区分开来,当查找数据时,发现DELETE的节点应该继续往后查找

最后我们就得到了节点的三种状态标识:
在这里插入图片描述

现在我们再看到哈希表的基本结构:

enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<HashData<K, V>> _tables;//哈希表size_t _n = 0;//元素个数
};

哈希表的节点HashData

pair<K, V> _kv:哈希表存储的键值对
State _state = EMPTY:标识节点的状态,默认状态为空-EMPTY

在哈希表的类HashTable中,存在两个成员变量:

vector<HashData<K, V>> _tables:哈希表,表中存储着HashData<K, V>也就是键值对
size_t _n = 0:哈希表中的元素个数,初始值为0

HashTable构造函数:

HashTable(size_t size = 10)
{_tables.resize(size);
}

一开始给哈希表10个大小的空间,装不下再扩容。


查找

想要在哈希表中查找数据,无非就遵顼以下规则:

通过哈希函数计算出数据对应的地址
去地址处查找,如果地址处不是目标值,往后继续查找
遇到EMPTY还没有找到,说明数据不存在哈希表中
遇到DELETEEXIST,继续往后查找

代码如下:

HashData<K, V>* Find(const K& key)
{size_t hashi = key % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;
}

代码解析:

HashData<K, V>* Find(const K& key)
查找函数,输入一个key值,返回指向该值节点的指针


size_t hashi = key % _tables.size();
通过除留余数法,计算出key对应的下标hashi


while (_tables[hashi]._state != EMPTY)
只要hashi对应的下标不为EMPTY,就继续往后查找


if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)
只有当前节点存在EXIST,并且节点内的值等于目标值,就返回该节点的地址


hashi++;hashi %= _tables.size();
如果当前节点不是目标值,往后一个节点查找。但是这个过程有可能越界,此时如果遇到哈希表末尾,则通过取模计算从头部继续查找


return nullptr;
如果前面没有找到,说明目标值不存在,返回空指针

但是当前的代码存在一个问题:哈希表作用于泛型,key % _tables.size()有可能是违法的行为,因为key可能不是一个数字。这该怎么办?

解决以上问题,就是把传进来的数据转化为整型。对此我们可以在模板中多加一个仿函数的参数,用户可以在仿函数中自定义数据 -> 整型的转换规则,然后我们在对这个整型使用除留余数法获取地址。

在那之前,我们可以先写一个仿函数,用于处理整型 -> 整型的转化:

struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};

因为本身就是整型,所以返回自己就可以了。
另外的,由于我们经常使用哈希表存储字符串,所以我们还可以写一个string -> 整型的转换规则:

经过研究,有人发现:把字符串的每一位的ASCII加起来,并且每次加和后,乘以一个数值,得到的数值,分散性很强:

struct HashFunc
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};

其中,这个数值由13间断地排列,这样得出来的值分散性最强,我此处采用数值131

在STL中,整型-> 整型转化的函数,被写为了一个模板,而这个string -> 整型被写为了一个模板特化:

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};

现在我们给哈希表加上第三个模板参数Hash,用于传入仿函数:

template<class K, class V, class Hash>
class HashTable
{};

然后我们将这个HashFunc<K>仿函数作为哈希表的第三个模板参数的默认值:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{};

由于我们的string -> 整型被写为了一个模板特化,此时我们的string也可以通过默认值直接转化,不用自己传入模板参数。

原先我们获得下标的代码如下:

size_t hashi = key % _tables.size();

现在我们要通过仿函数来统一获得整型,再进行除留余数操作

Hash hs;
size_t hashi = hs(key) % _tables.size();

这样我们就可以让多种数据转为整型了。


插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据:
  • 如果下标对应的位置已经有数据,往后查找,直到某一个位置为EMPTY或者DELETE
  • 如果下标对应的位置没有数据,直接插入
  1. 插入后,把对应位置的状态转化为EXIST

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;//仿函数实例化出的对象size_t hashi = hs(kv.first) % _tables.size();//获得目标值对应的下标while (_tables[hashi]._state == EXIST)//往后查找合适的位置插入{hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;//插入_tables[hashi]._state = EXIST;//改变状态_n++;//哈希表中的元素个数+1return true;
}

目前还有一个问题,那就是:如果哈希表满了怎么办?

如果哈希表满了,我们就要进行扩容操作,但是我们并不是在哈希表满的时候扩容。其实我们可以发现,当这个哈希表越满,我们查找数据的效率就越低,甚至说:如果查找一个不存在的数据,我们可能要用O(N)的复杂度遍历整个哈希表。因此我们因该把哈希表的负载率控制在一定值,当超过一定值,我们就要进行扩容操作。在此我把负载率控制在70%,负载率超过70%,我们就进行扩容:

if ((double)_n / _tables.size() >= 0.7)
{//扩容
}

要注意的是,_n_tables.size()都是整型,它们之间进行除法是整数除法,所以我们要把前者强制转化为double,让其进行小数除法。

对于扩容,我有两个方案:

  1. 新建一个更大的vector,把所有数值重新映射到哈希表中
  2. 新建一个更大的哈希表,把所有数值insert到哈希表中,然后把新的哈希表里面的vector交换给自己

两者对比,有一个重要的区别就是:我们已经写过哈希表的insert函数了,我们只要遍历一遍原哈希表的数据,就可以完成插入操作。但是对于vector,我们想要重新映射,就需要重写一个vector的映射逻辑。因此最好采用后者:

if ((double)_n / _tables.size() >= 0.7)
{size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);
}

代码解析:

size_t newSize = _tables.size() * 2:
计算出新的哈希表的大小,这里采用二倍扩容


HashTable<K, V, Hash> newHT(newSize)
创建一个新的哈希表newHT,其大小为原哈希表的两倍


for (auto& e : _tables)
遍历原哈希表(其实就是遍历哈希表里面的数组)


if (e._state == EXIST) {newHT.Insert(e._kv)}
只要当前节点的值状态为EXIST,就把它插入到新表


_tables.swap(newHT._tables);
把新创建的哈希表的vector交换给当前哈希表。

这里有一个细节问题,那就是我们临时创建的哈希表newHT生命周期仅在这个if的括号内。当出了生命周期,newHT就会调用析构函数,自动销毁内部的vector,而我们把原先的较小的那个vector交换给了这个newHT,此时这个newHT还起到了销毁原先的小vector的功能

插入总代码:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;
}

删除

删除也是一个比较简单的逻辑:

先通过Find接口找到要删除的值

  • 如果没找到,返回false,表示删除失败
  • 如果找到,把对应节点的状态改为DELETE

最后再把哈希表的_n - 1,表示存在的节点数少了一个。

代码如下:

bool Erase(const K& key)
{HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;
}

至此我们就完成了一个闭散列的哈希表。


总代码展示
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}HashData<K, V>* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;}private:vector<HashData<K, V>> _tables;size_t _n = 0;//元素个数
};

开散列 - 哈希桶

其实闭散列并不是一个优秀的方案来处理哈希冲突,因为一个数值的位置被占用后,这个数值就会去占用别人的位置,这种拆东墙补西墙的行为,会导致恶性循环,查找的效率也很低。最差的情况实际复杂度会退化到O(N)。

在STL库中,采用的是更加优秀的开散列方案。

哈希表的数组vector中,不再直接存储数据,而是存储一个链表的指针。当一个数值映射到对应的下标后,就插入到这个链表中。其中每一个链表称为一个哈希桶,每个哈希桶中,存放着哈希冲突的元素。

在这里插入图片描述

一般而言,我们的链表使用单向链表就够了,因为一个哈希桶中一般不会出现太多元素。

现在我们来尝试实现这个开散列哈希表:


基本结构

对于每一个节点,其要存储当前节点的值,也要存储下一个节点的指针,基本结构如下:

template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};

_kv:节点存储但键值对
_next:指向下一个节点的指针

哈希表:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

基本结构和开散列是一致的,但是vector内部存储的不再是节点了,而是指向节点的指针Node*

对于这个哈希表,由于我们开辟了外部资源,所以我们还要自己写一个析构函数,防止内存泄漏:

~HashTable()
{for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}
}

基本逻辑就是遍历整个vector,然后把每个元素指向的链表都delete释放掉。


查找

查找的基本逻辑如下:

  1. 先通过哈希函数计算出数据对应的下标
  2. 通过下标找到对应的链表
  3. 遍历链表,找数据
  • 如果某个节点的数据匹配上了,返回该节点指针
  • 如果遍历到了nullptr,返回空指针表示没找到

代码如下:

Node* Find(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;
}

这个很基础,就不详细解释了。


插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据

我们思考一个问题:我们将数据插入到链表中时,是头插还是尾插?
由于我们不知道访问同一个哈希桶中的数据时,会访问哪一个,所以哈希桶中数据的先后是没有区别的。但是尾插需要找尾,会增加插入的时间,因此我们直接头插就可以了。

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;size_t hashi = hs(kv.first) % _tables.size();//计算下标Node* newNode = new Node(kv);//创建节点newNode->_next = _tables[hashi];//头插_tables[hashi] = newNode;++_n;//更新元素个数return true;
}

经过以上逻辑,我们就可以插入一个数据到哈希表中了。但是我们面临着相同的问题,如果哈希表太满,时间复杂度会发生退化,因此我们要在负载率过高时进行扩容。

与闭散列不同的是,开散列的哈希桶之间不会互相影响,因此这个负载率可以高一些。在STL中,其负载率控制在100%。

if (_n == _tables.size())//负载率100%
{//扩容
}

我们可以像之前一个,创建一个新的哈希表,然后把所有的值都插入进去,这当然是一个不错的办法。但是闭散列与开散列有一个很大的区别就是,哈希桶会额外创建大量的链表节点。如果我们单纯的进行插入,就要把原先的所有节点释放掉,再创建新的节点。这样会浪费很多时间。我们最好把原先创建的节点利用起来,因此我们要重写一个逻辑,把原先的节点进行迁移。

先创建一个新的vector

vector<Node*> newTables(_tables.size() * 2, nullptr);

新的vector的大小是原先的两倍,所有节点初始化为nullptr;

再用两层循环遍历所有节点:


for (size_t i = 0; i < _tables.size(); i++)
{Node* cur = _tables[i];while (cur){Node* next = cur->_next;cur = next;}
}

对于每一个节点,我们要得到它的值,然后计算出它在新的表中的下标,插入到对应的下标位置:

size_t hashi = hs(cur->_kv.first) % newTables.size();//计算下标cur->_next = newTables[hashi];//头插
newTables[hashi] = cur;//头插

要注意的是,我们每遍历完一个哈希桶,要把原先的vector中指向哈希桶的指针置空,否则原先的vector在销毁的时候,调用析构函数,会把我们转移的节点给销毁掉。

扩容总代码如下:

if (_n == _tables.size())
{vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);
}

删除

删除逻辑:

  1. 通过哈希函数计算出对应的下标
  2. 到对应的哈希桶中查找目标值
  • 如果找到,删除对应的节点
  • 如果没找到,返回false表示删除失败
  1. _n - 1表示删除了一个元素

代码如下:

bool Erase(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;
}

这个逻辑也比较简单,但是要注意的是,我们删除链表节点后,要把这个节点的前后连接起来,所以我们需要一个额外的parent来标识前面一个节点。


代码展示
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;Hash hs;//哈希桶情况下,负载因子到1才扩容if (_n == _tables.size()){vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);}size_t hashi = hs(kv.first) % _tables.size();Node* newNode = new Node(kv);newNode->_next = _tables[hashi];_tables[hashi] = newNode;++_n;return true;}bool Erase(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/562870.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux的学习之路:2、基础指令(1)

一、ls指令 上篇文章已经说了一点点的ls指令&#xff0c;不过那还是不够的&#xff0c;这篇文章会介绍更多的指令&#xff0c;最起码能使用命令行进行一些简单的操作&#xff0c;下面开始介绍了 ls常用选项 -a 列出目录下的所有文件&#xff0c;包括以 . 开头的隐含文件。 -d…

蓝桥杯-单片机基础8——上下位机的串口通信设置(附小蜜蜂课程代码)

蓝桥杯单片机组备赛指南请查看这篇文章&#xff1a;戳此跳转蓝桥杯备赛指南文章 本文章针对蓝桥杯-单片机组比赛开发板所写&#xff0c;代码可直接在比赛开发板上使用。 型号&#xff1a;国信天长4T开发板&#xff08;绿板&#xff09;&#xff0c;芯片&#xff1a;IAP15F2K6…

Python 从0开始 一步步基于Django创建项目(3)使用Admin site管理数据模型

本文内容建立在《Python 从0开始 一步步基于Django创建项目&#xff08;2&#xff09;创建应用程序&数据模型》的基础上。 Django提供的admin site&#xff0c;使得网站管理员&#xff0c;能够轻松管理网站的数据模型。 本文首先创建‘管理员账户’&#xff0c;即超级用户…

Day 1 二分算法(C++)

算法简介 二分查找&#xff08;Binary Search&#xff09;是一种常见的查找算法&#xff0c;它适用于已经排序好的数组或列表。它的基本思想是不断地将待查找区间分成两半&#xff0c;并通过比较目标值与中间元素的大小关系来确定目标值在哪一半中&#xff0c;从而缩小查找范围…

Uibot6.0 (RPA财务机器人师资培训第3天 )财务招聘信息抓取机器人案例实战

训练网站&#xff1a;泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博…

AGV|机器人导航识别二维码视觉传感器TDCS-0100与上位机PLC联机实例说明

目前二维码视觉导航的AGV出货量非常大&#xff0c;几乎都是仓储型AGV使用的导航方式。在地面或者天花板等位置标贴二维码作为标记点&#xff0c;通过扫描读取二维码信息和二维码相对相机的角度来确定当前位置。 本文重点介绍AGV|机器人导航识别二维码视觉传感器TDCS-0100与上位…

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现WOA-TCN-BiGRU-Attention鲸鱼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…

使用Intellij idea编写Spark应用程序(Scala+SBT)

使用Intellij idea编写Spark应用程序(ScalaSBT) 对Scala代码进行打包编译时&#xff0c;可以采用Maven&#xff0c;也可以采用SBT&#xff0c;相对而言&#xff0c;业界更多使用SBT。 运行环境 Ubuntu 16.04 Spark 2.1.0 Intellij Idea (Version 2017.1) 安装Scala插件 安…

含“AI”量上涨,智能模组SC208系列助力智慧零售全场景高质发展

AI正重塑智慧零售产业&#xff0c;加速零售在采购、生产、供应链、销售、服务等方面改善运营效率和用户体验。零售行业经历了从线下到线上再到全渠道融合发展过程&#xff0c;“提质、降本、增效、高体验”是亘古不变的商业化与智能化方向。含“AI”量逐渐上涨的智慧零售正经历…

C语言例:n是否为素数(质数)

质数是指只能被1和自身整除的正整数。要判断一个数n是否为质数&#xff0c;可以通过以下步骤进行&#xff1a; 首先&#xff0c;判断n是否小于2&#xff0c;如果小于2&#xff0c;则不是质数。然后&#xff0c;从2开始&#xff0c;逐个判断n是否能被2到sqrt(n)之间的数整除。如…

数据可视化-ECharts Html项目实战(5)

在之前的文章中&#xff0c;我们学习了如何设置滚动图例&#xff0c;工具箱设置和插入图片。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢 数据可视化-ECharts…

增强现实(AR)在广告中的力量

The Power of AR in Advertising 写在前面 增强现实&#xff08;AR -Augmented Reality&#xff09;是指借助软件、应用程序和智能手机、平板电脑或耳机等设备&#xff0c;为日常生活添加视觉和音频元素的技术。如今&#xff0c;品牌和广告商可以在营销活动中使用AR&#xff0…