Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例

Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例

  • 学习前言
  • 源码下载地址
  • 原理解析
    • 一、先验知识
    • 二、什么是inpaint
    • 三、Stable Diffusion中的inpaint
      • 1、开源的inpaint模型
      • 2、基于base模型inpaint
    • 四、inpaint流程
      • 1、输入图片到隐空间的编码
      • 2、文本编码
      • 3、采样流程
        • a、生成初始噪声
        • b、对噪声进行N次采样
        • c、如何引入denoise
          • i、加噪的逻辑
          • ii、mask处理
          • iii、采样处理
      • 4、隐空间解码生成图片
  • Inpaint预测过程代码

学习前言

Inpaint是Stable Diffusion中的常用方法,一起简单学习一下。
在这里插入图片描述

源码下载地址

https://github.com/bubbliiiing/stable-diffusion

喜欢的可以点个star噢。

原理解析

一、先验知识

txt2img的原理如博文
Diffusion扩散模型学习2——Stable Diffusion结构解析-以文本生成图像(文生图,txt2img)为例

img2img的原理如博文
Diffusion扩散模型学习3——Stable Diffusion结构解析-以图像生成图像(图生图,img2img)为例

二、什么是inpaint

Inpaint是一项图片修复技术,可以从图片上去除不必要的物体,让您轻松摆脱照片上的水印、划痕、污渍、标志等瑕疵。

一般来讲,图片的inpaint过程可以理解为两步:
1、找到图片中的需要重绘的部分,比如上述提到的水印、划痕、污渍、标志等
2、去掉水印、划痕、污渍、标志等,自动填充图片应该有的内容。

三、Stable Diffusion中的inpaint

Stable Diffusion中的inpaint的实现方式有两种:

1、开源的inpaint模型

参考链接:inpaint_st.py,该模型经过特定的训练。需要输入符合需求的图片才可以进行inpaint。

需要注意的是,该模型使用的config文件发生了改变,改为v1-inpainting-inference.yaml。其中最显著的区别就是unet_config的in_channels从4变成了9。相比于原来的4,我们增加了4+1(5)个通道的信息。
在这里插入图片描述
4+1(5)个通道的信息应该是什么呢?一个是被mask后的图像,对应其中的4;一个是mask的图像,对应其中的1。
在这里插入图片描述

  • 1、我们首先把图片中需要inpaint的部分给置为0,获得被mask后的图像,然后利用VAE编码,VAE输出通道为4,假设被mask的图像是[512, 512, 3],此时我们获得了一个[4, 64, 64]的隐含层特征,对应其中的4。
  • 2、然后需要对mask进行下采样,采样到和隐含层特征一样的高宽,即mask的shape为[1, 512, 512],利用下采样获得[1, 64, 64]的mask。本质上,我们获得了隐含层的mask
  • 3、然后我们将 下采样后的被mask的图像隐含层的mask 在通道上做一个堆叠,获得一个[5, 64, 64]的特征,然后将此特征与随机初始化的高斯噪声堆叠,则获得了上述图片中的9通道特征。

此后采样的过程与常规采样方式一样,全部采样完成后,使用VAE解码,获得inpaint后的图像。

可以感受到上述的方式必须基于一个已经训练好的unet模型,这要求训练者需要有足够的算力去完成这一个工作,对大众开发者而言并不友好。因此该方法很少在实际中得到使用。

2、基于base模型inpaint

如果我们必须训练一个inpaint模型才能对当前的模型进行inpaint,那就太麻烦了,有没有什么方法可以不需要训练就能inpaint呢?

诶诶,当然有哈。

Stable Diffusion就是一个生成模型,如果我们可以做到让Stable Diffusion只生成指定区域,并且在生成指定区域的时候参考其它区域,那么它自身便是一个天然的inpaint模型
在这里插入图片描述
如何做到这一点呢?我们需要结合img2img方法,我们首先考虑inpaint的两个输入:一个是原图,另外一个是mask图。

在img2img中,存在一个denoise参数,假设我们设置denoise数值为0.8,总步数为20步,那么我们会对输入图片进行0.8x20次的加噪声。如果我们可以在这个加噪声图片的基础上进行重建,那么网络必然会考虑加噪声图(也就对应了原始图片的特征)

在图像重建的20步中,对隐含层特征,我们利用mask将不重建的地方都替换成 原图按照当前步数加噪后的隐含层特征。此时不重建的地方特征都由输入图片决定。然后不替换需要重建的地方进行,利用unet计算噪声进行重建。

具体部分,可看下面的循环与代码,我已经标注出了 替换特征的地方,在这里mask等于1的地方保留原图,mask等于0的地方不断的重建。

  • 将原图x0映射到VAE隐空间,得到img_orig;
  • 初始化随机噪声img(也可以使用img_orig完全加噪后的噪声);
  • 开始循环:
    • 对于每一次时间步,根据时间步生成img_orig对应的噪声特征;
    • 一个是基于上个时间步降噪后得到的img,一个是基于原图得到的img_orig。通过mask将两者融合, i m g = i m g _ o r i g ∗ m a s k + ( 1.0 − m a s k ) ∗ i m g img = img\_orig * mask + (1.0 - mask) * img img=img_origmask+(1.0mask)img。即,将原图中的非mask区域和噪声图中的mask区域进行融合,得到新的噪声图。
    • 然后继续去噪声直到结束。

由于该方法不需要训练新模型,并且重建效果也不错,所以该方法比较通用。

for i, step in enumerate(iterator):# index是用来取得对应的调节参数的index   = total_steps - i - 1# 将步数拓展到bs维度ts      = torch.full((b,), step, device=device, dtype=torch.long)# --------------------------------------------------------------------------------- ##   替换特征的地方#   用于进行局部的重建,对部分区域的隐向量进行mask。#   对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征#   self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?img = img_orig * mask + (1. - mask) * img# 进行采样outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,quantize_denoised=quantize_denoised, temperature=temperature,noise_dropout=noise_dropout, score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)img, pred_x0 = outs# 回调函数if callback: callback(i)if img_callback: img_callback(pred_x0, i)if index % log_every_t == 0 or index == total_steps - 1:intermediates['x_inter'].append(img)intermediates['pred_x0'].append(pred_x0)

四、inpaint流程

根据通用性,本文主要以上述提到的基于base模型inpaint进行解析。

1、输入图片到隐空间的编码

在这里插入图片描述
inpaint技术衍生于图生图技术,所以同样需要指定一张参考的图像,然后在这个参考图像上开始工作。

利用VAE编码器对这张参考图像进行编码,使其进入隐空间,只有进入了隐空间,网络才知道这个图像是什么

此时我们便获得在隐空间的图像,后续会在这个 隐空间加噪后的图像 的基础上进行采样。

2、文本编码

在这里插入图片描述
文本编码的思路比较简单,直接使用CLIP的文本编码器进行编码就可以了,在代码中定义了一个FrozenCLIPEmbedder类别,使用了transformers库的CLIPTokenizer和CLIPTextModel。

在前传过程中,我们对输入进来的文本首先利用CLIPTokenizer进行编码,然后使用CLIPTextModel进行特征提取,通过FrozenCLIPEmbedder,我们可以获得一个[batch_size, 77, 768]的特征向量。

class FrozenCLIPEmbedder(AbstractEncoder):"""Uses the CLIP transformer encoder for text (from huggingface)"""LAYERS = ["last","pooled","hidden"]def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,freeze=True, layer="last", layer_idx=None):  # clip-vit-base-patch32super().__init__()assert layer in self.LAYERS# 定义文本的tokenizer和transformerself.tokenizer      = CLIPTokenizer.from_pretrained(version)self.transformer    = CLIPTextModel.from_pretrained(version)self.device         = deviceself.max_length     = max_length# 冻结模型参数if freeze:self.freeze()self.layer = layerself.layer_idx = layer_idxif layer == "hidden":assert layer_idx is not Noneassert 0 <= abs(layer_idx) <= 12def freeze(self):self.transformer = self.transformer.eval()# self.train = disabled_trainfor param in self.parameters():param.requires_grad = Falsedef forward(self, text):# 对输入的图片进行分词并编码,padding直接padding到77的长度。batch_encoding  = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,return_overflowing_tokens=False, padding="max_length", return_tensors="pt")# 拿出input_ids然后传入transformer进行特征提取。tokens          = batch_encoding["input_ids"].to(self.device)outputs         = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")# 取出所有的tokenif self.layer == "last":z = outputs.last_hidden_stateelif self.layer == "pooled":z = outputs.pooler_output[:, None, :]else:z = outputs.hidden_states[self.layer_idx]return zdef encode(self, text):return self(text)

3、采样流程

在这里插入图片描述

a、生成初始噪声

在inpaint中,我们的初始噪声获取于参考图片,参考第一步获得Latent特征后,使用该Latent特征基于DDIM Sampler进行加噪,获得输入图片加噪后的特征。

此处先不引入denoise参数,所以直接20步噪声加到底。在该步,我们执行了下面两个操作:

  • 将原图x0映射到VAE隐空间,得到img_orig;
  • 初始化随机噪声img(也可以使用img_orig完全加噪后的噪声);

b、对噪声进行N次采样

我们便从上一步获得的初始特征开始去噪声。

我们会对ddim_timesteps的时间步取反,因为我们现在是去噪声而非加噪声,然后对其进行一个循环,循环的代码如下:

循环中有一个mask,它的作用是用于进行局部的重建,对部分区域的隐向量进行mask,在此前我们并未用到,这一次我们需要用到了

  • 对于每一次时间步,根据时间步生成img_orig对应的加噪声特征;
  • 一个是基于上个时间步降噪后得到的img;一个是基于原图得到的img_orig。我们通过mask将两者融合, i m g = i m g _ o r i g ∗ m a s k + ( 1.0 − m a s k ) ∗ i m g img = img\_orig * mask + (1.0 - mask) * img img=img_origmask+(1.0mask)img。即,将原图中的非mask区域和噪声图中的mask区域进行融合,得到新的噪声图。
  • 然后继续去噪声直到结束。
for i, step in enumerate(iterator):# index是用来取得对应的调节参数的index   = total_steps - i - 1# 将步数拓展到bs维度ts      = torch.full((b,), step, device=device, dtype=torch.long)# --------------------------------------------------------------------------------- ##   替换特征的地方#   用于进行局部的重建,对部分区域的隐向量进行mask。#   对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征#   self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?img = img_orig * mask + (1. - mask) * img# 进行采样outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,quantize_denoised=quantize_denoised, temperature=temperature,noise_dropout=noise_dropout, score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)img, pred_x0 = outs# 回调函数if callback: callback(i)if img_callback: img_callback(pred_x0, i)if index % log_every_t == 0 or index == total_steps - 1:intermediates['x_inter'].append(img)intermediates['pred_x0'].append(pred_x0)return img, intermediates

在这里插入图片描述

c、如何引入denoise

上述代码是官方自带的基于base模型的可用于inpaint的代码,但问题在于并未考虑denoise参数。

假设我们对生成图像的某一区域不满意,但是不满意的不多,其实我们不需要完全进行重建,只需要重建一点点就行了,那么此时我们便需要引入denoise参数,表示我们要重建的强度。

i、加噪的逻辑

同样,我们的初始噪声获取于参考图片,参考第一步获得Latent特征后,使用该Latent特征和denoise参数基于DDIM Sampler进行加噪,获得输入图片加噪后的特征。

加噪的逻辑如下:

  • denoise可认为是重建的比例,1代表全部重建,0代表不重建;
  • 假设我们设置denoise数值为0.8,总步数为20步;我们会对输入图片进行0.8x20次的加噪声,剩下4步不加,可理解为80%的特征,保留20%的特征;不过就算加完20步噪声原始输入图片的信息还是有一点保留的,不是完全不保留。
with torch.no_grad():if seed == -1:seed = random.randint(0, 65535)seed_everything(seed)# ----------------------- ##   对输入图片进行编码并加噪# ----------------------- #if image_path is not None:img = HWC3(np.array(img, np.uint8))img = torch.from_numpy(img.copy()).float().cuda() / 127.0 - 1.0img = torch.stack([img for _ in range(num_samples)], dim=0)img = einops.rearrange(img, 'b h w c -> b c h w').clone()if vae_fp16:img = img.half()model.first_stage_model = model.first_stage_model.half()else:model.first_stage_model = model.first_stage_model.float()ddim_sampler.make_schedule(ddim_steps, ddim_eta=eta, verbose=True)t_enc   = min(int(denoise_strength * ddim_steps), ddim_steps - 1)# 获得VAE编码后的隐含层向量z       = model.get_first_stage_encoding(model.encode_first_stage(img))x0      = z# 获得加噪后的隐含层向量z_enc   = ddim_sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))z_enc   = z_enc.half() if sd_fp16 else z_enc.float()
ii、mask处理

我们需要对mask进行下采样,使其和上述获得的加噪后的特征的shape一样。

if mask_path is not None:mask = torch.from_numpy(mask).to(model.device)mask = torch.nn.functional.interpolate(mask, size=z_enc.shape[-2:])
iii、采样处理

此时,因为使用到了denoise参数,我们要基于img2img中的decode方法进行采样。

由于decode方法中不存在mask与x0参数,我们补一下:

@torch.no_grad()
def decode(self, x_latent, cond, t_start, mask, x0, unconditional_guidance_scale=1.0, unconditional_conditioning=None,use_original_steps=False):# 使用ddim的时间步# 这里内容看起来很多,但是其实很少,本质上就是取了self.ddim_timesteps,然后把它reversed一下timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timestepstimesteps = timesteps[:t_start]time_range = np.flip(timesteps)total_steps = timesteps.shape[0]print(f"Running DDIM Sampling with {total_steps} timesteps")iterator = tqdm(time_range, desc='Decoding image', total=total_steps)x_dec = x_latentfor i, step in enumerate(iterator):index = total_steps - i - 1ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)# --------------------------------------------------------------------------------- ##   替换特征的地方#   用于进行局部的重建,对部分区域的隐向量进行mask。#   对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征#   self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?x_dec = img_orig * mask + (1. - mask) * x_dec# 进行单次采样x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)return x_dec

4、隐空间解码生成图片

在这里插入图片描述
通过上述步骤,已经可以多次采样获得结果,然后我们便可以通过隐空间解码生成图片。

隐空间解码生成图片的过程非常简单,将上文多次采样后的结果,使用decode_first_stage方法即可生成图片。

在decode_first_stage方法中,网络调用VAE对获取到的64x64x3的隐向量进行解码,获得512x512x3的图片。

@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):if predict_cids:if z.dim() == 4:z = torch.argmax(z.exp(), dim=1).long()z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)z = rearrange(z, 'b h w c -> b c h w').contiguous()z = 1. / self.scale_factor * z# 一般无需分割输入,所以直接将x_noisy传入self.model中,在下面else进行if hasattr(self, "split_input_params"):......else:if isinstance(self.first_stage_model, VQModelInterface):return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)else:return self.first_stage_model.decode(z)

Inpaint预测过程代码

整体预测代码如下:

import os
import randomimport cv2
import einops
import numpy as np
import torch
from PIL import Image
from pytorch_lightning import seed_everythingfrom ldm_hacked import *# ----------------------- #
#   使用的参数
# ----------------------- #
# config的地址
config_path = "model_data/sd_v15.yaml"
# 模型的地址
model_path  = "model_data/v1-5-pruned-emaonly.safetensors"
# fp16,可以加速与节省显存
sd_fp16     = True
vae_fp16    = True# ----------------------- #
#   生成图片的参数
# ----------------------- #
# 生成的图像大小为input_shape,对于img2img会进行Centter Crop
input_shape = [512, 768]
# 一次生成几张图像
num_samples = 1
# 采样的步数
ddim_steps  = 20
# 采样的种子,为-1的话则随机。
seed        = 12345
# eta
eta         = 0
# denoise强度,for img2img
denoise_strength = 1.00# ----------------------- #
#   提示词相关参数
# ----------------------- #
# 提示词
prompt      = "a cute dog, with yellow leaf, trees"
# 正面提示词
a_prompt    = "best quality, extremely detailed"
# 负面提示词
n_prompt    = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
# 正负扩大倍数
scale       = 9
# img2img使用,如果不想img2img这设置为None。
image_path  = "imgs/test_imgs/cat.jpg"
# inpaint使用,如果不想inpaint这设置为None;inpaint使用需要结合img2img。
# 注意mask图和原图需要一样大
mask_path   = "imgs/test_imgs/cat_mask.jpg"# ----------------------- #
#   保存路径
# ----------------------- #
save_path   = "imgs/outputs_imgs"# ----------------------- #
#   创建模型
# ----------------------- #
model   = create_model(config_path).cpu()
model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False)
model   = model.cuda()
ddim_sampler = DDIMSampler(model)
if sd_fp16:model = model.half()if image_path is not None:img = Image.open(image_path)img = crop_and_resize(img, input_shape[0], input_shape[1])if mask_path is not None:mask = Image.open(mask_path).convert("L")mask = crop_and_resize(mask, input_shape[0], input_shape[1])mask = np.array(mask)mask = mask.astype(np.float32) / 255.0mask = mask[None,None]mask[mask < 0.5] = 0mask[mask >= 0.5] = 1with torch.no_grad():if seed == -1:seed = random.randint(0, 65535)seed_everything(seed)# ----------------------- ##   对输入图片进行编码并加噪# ----------------------- #if image_path is not None:img = HWC3(np.array(img, np.uint8))img = torch.from_numpy(img.copy()).float().cuda() / 127.0 - 1.0img = torch.stack([img for _ in range(num_samples)], dim=0)img = einops.rearrange(img, 'b h w c -> b c h w').clone()if vae_fp16:img = img.half()model.first_stage_model = model.first_stage_model.half()else:model.first_stage_model = model.first_stage_model.float()ddim_sampler.make_schedule(ddim_steps, ddim_eta=eta, verbose=True)t_enc   = min(int(denoise_strength * ddim_steps), ddim_steps - 1)# 获得VAE编码后的隐含层向量z       = model.get_first_stage_encoding(model.encode_first_stage(img))x0      = z# 获得加噪后的隐含层向量z_enc   = ddim_sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))z_enc   = z_enc.half() if sd_fp16 else z_enc.float()if mask_path is not None:mask = torch.from_numpy(mask).to(model.device)mask = torch.nn.functional.interpolate(mask, size=z_enc.shape[-2:])mask = 1 - mask# ----------------------- ##   获得编码后的prompt# ----------------------- #cond    = {"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}un_cond = {"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}H, W    = input_shapeshape   = (4, H // 8, W // 8)if image_path is not None:samples = ddim_sampler.decode(z_enc, cond, t_enc, mask, x0, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond)else:# ----------------------- ##   进行采样# ----------------------- #samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,shape, cond, verbose=False, eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=un_cond)# ----------------------- ##   进行解码# ----------------------- #x_samples = model.decode_first_stage(samples.half() if vae_fp16 else samples.float())x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)# ----------------------- #
#   保存图片
# ----------------------- #
if not os.path.exists(save_path):os.makedirs(save_path)
for index, image in enumerate(x_samples):cv2.imwrite(os.path.join(save_path, str(index) + ".jpg"), cv2.cvtColor(image, cv2.COLOR_BGR2RGB))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56291.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【瑞吉外卖项目复写】基本部分复写笔记

Day1 瑞吉外卖项目概述 mysql的数据源配置 spring:datasource:druid:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://localhost:3306/regie?serverTimezoneAsia/Shanghai&useUnicodetrue&characterEncodingutf-8&zeroDateTimeBehaviorconvertTo…

STM32 HAL 驱动PM2.5传感器(GP2Y10AU气体检测模块)

目录 1、简介 2、CubeMX初始化配置 2.1 基础配置 2.1.1 SYS配置 2.1.2 RCC配置 2.2 ADC外设配置 2.3 串口外设配置 2.4 项目生成 3、KEIL端程序整合 3.1 串口重映射 3.2 ADC数据采集 3.3 主函数代 3.4 效果展示 1、简介 本文通过STM32F103C8T6单片机通过HAL库方式对G…

Element-plus中tooltip 提示框修改宽度——解决方案

tooltip 提示框修改宽度方法&#xff1a; 在element中&#xff0c;想要设置表格的内容&#xff0c;超出部分隐藏&#xff0c;鼠标悬浮提示 可以在el-table 上添加show-overflow-tooltip属性 同时可以通过tooltip-options配置提示信息 如下图代码 <el-tableshow-overflo…

中信银行与华为联合编制:《2023金融数据可信流通技术白皮书》

导读 中信银行与华为技术有限公司联合编制的《金融数据可信流通技术白皮书》&#xff0c;从技术、业务、管理、法律等维度探讨了金融业数据流通的现状、问题、机遇和挑战&#xff0c;并提出了一套金融业数据流通的技术解决方案。该方案基于华为OceanStor存储&#xff0c;结合…

前台自动化测试:基于敏捷测试驱动开发(TDD)的自动化测试原理

一、自动化测试概述 自动化测试主要应用到查询结果的自动化比较&#xff0c;把借助自动化把相同的数据库数据的相同查询条件查询到的结果同理想的数据进行自动化比较或者同已经保障的数据进行不同版本的自动化比较&#xff0c;减轻人为的重复验证测试。多用户并发操作需要自动…

前端下载文化部几种方法(excel,zip,html,markdown、图片等等)和导出 zip 压缩包

文章目录 1、location.href2、location.href3、a标签4、请求后端的方式5、文件下载的方式6、Blob和Base647、下载附件方法(excel,zip,html,markdown)8、封装下载函数9、导出 zip 压缩包相关方法(流方式) 总结 1、location.href //get请求 window.location.href url;2、locati…

APP外包开发的开发语言对比

在开发iOS APP时有两种语言可以选择&#xff0c;Swift&#xff08;Swift Programming Language&#xff09;和 Objective-C&#xff08;Objective-C Programming Language&#xff09;&#xff0c;它们是两种不同的编程语言&#xff0c;都被用于iOS和macOS等苹果平台的软件开发…

Vue3 列表渲染简单应用

去官网学习→列表渲染 | Vue.js 运行示例&#xff1a; 代码&#xff1a;HelloWorld.vue <template><div class"hello"><h1>Vue 列表渲染</h1><p v-for"item in dataList">{{item}}</p><p v-for"(item,index)…

vscode连接远程Linux服务器

文章目录 一、环境安装1.1 下载vscode1.2 下载vscode-sever 二、ssh链接2.1 安装Remote-SSH2.2 设置vscode ssh2.3 设置免密登录2.3.1 本地生成公私钥2.3.2 服务器端添加公钥 三、安装插件3.1 vscode安装插件3.1.1 在线安装插件3.1.2.1 下载插件3.1.2.2 安装插件 3.2 vscode-se…

Grafana集成prometheus(2.Grafana安装)

查找镜像 docker search grafana下载指定版本 docker pull grafana/grafana:10.0.1启动容器脚本 docker run -d -p 3000:3000 --namegrafana grafana/grafana:10.0.1查看是否启动 docker ps防火墙开启 检查防火墙3000端口是否开启 默认用户及密码 admin/admin 登录 ht…

cocos creator 的input.on 不生效

序&#xff1a; 1、执行input.on的时候发现不生效 2、一直按控制台也打印不出来console.log 3、先收藏这篇&#xff0c;因为到时候cocos要开发serveApi的时候&#xff0c;你得选一款趁手的后端开发并且&#xff0c;对习惯用ts写脚本的你来说&#xff0c;node是入门最快&#xf…

上海亚商投顾:沪指缩量调整 超导概念逆势大涨

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 市场情绪 沪指今日低开低走&#xff0c;深成指、创业板指盘中均跌超1%。医药医疗股全线调整&#xff0c;丽珠集团跌停&#…