pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

目录

1.迁移学习概念

2.数据预处理

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

3.2如果用GPU训练,需要加入以下代码

3.3卷积层冻结模块

3.4加载resnet152模

3.5解释initialize_model函数

3.6迁移学习网络搭建

3.7优化器

3.8训练模块(可以理解为主函数)

3.9开始训练

3.10微调

4.测试模型

4.1加载训练好的模型

4.2测试数据预处理

4.3数据展示

4.4提取测试数据集

4.5计算提取数据集的预测结果

4.6展示预测结果

参考文献


1.迁移学习概念

先说一下深度学习常见的问题

        1.数据集不够,通常用数据增强解决。

        2.参数难以确定,训练时间长,这就需要用迁移学习来解决

什么叫迁移学习呢:比方说有一个对100w的自行车数据集,并用VGG模型训练好的网络,而此时你想训练一个1w自行车数据集(虽然对象一样,但采集的数据会不同),也用VGG模型进行训练,你发现,你们数据集的对象一样,选用的网络模型一样,此时在初始化自己模型权重(就是卷积层,池化层和全连接层的参数)时,可以用人家训练好的模型参数(如果不这样就需要随机初始化模型权重),这样做可以节省大量寻找最优参数的时间,又可以保证参数的准确。

总结:迁移学习就是用别人的东西训练自己的东西,但要注意,为了使用别人的模型参数,要保证自己的数据对象、网络结构、输入和输出数据的结构和别人相同。比方说,别人识别狗,你不能识别 猫,别人用VGG你不能用resnet,别人输入和输入图像大小是224×224.你不能是256×256。

进一步理解迁移学习的使用1:看下图最大的红框,表示卷积层,当用别人的模型时,对卷积层的两种处理方式。

        A:作为自己模型权重的初始化参数。

        B:冻结卷积层网络,意思是直接用别人的参数,不再更新。冻结卷积层网络又分几种情况。

                B1:当数据量小时,冻结第二大红框表示的卷积层,剩下卷积层进行更新。因为数据量小时,容易过拟合,直接用别人呢参数最好。

                B2:当数据量中等时冻结最小红框表示的卷积层,剩下的卷积层进行更行。

                B3:当数据量足够大时,不冻结卷积层,用A的方法,只作为自己模型权重的初始化参数。数据量大时,虽然对象一样,但毕竟数据不同,会有一定差异,更新参数是最优选择。

 进一步理解迁移学习的使用2:说完卷积层,在说一下全连接层,必须要注意不管卷积层选A还是B,全连接层都是要更新的,原因在于,别人模型进行图像分类可能是进行1000个分类,而你只进行100或者999个分类,那么全连接层的参数肯定是不同的。

2.数据预处理

上接该文:pytorch实战-图像分类(一)(数据预处理)

 3.训练模型(基于迁移学习)

3.1选择网络,这里用resnet

model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True 

3.2如果用GPU训练,需要加入以下代码

# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:print('CUDA is not available.  Training on CPU ...')
else:print('CUDA is available!  Training on GPU ...')device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.3卷积层冻结模块

def set_parameter_requires_grad(model, feature_extracting):if feature_extracting:for param in model.parameters():param.requires_grad = False

3.4加载resnet152模

注意:resnet152模型就是别人的模型。

model_ft = models.resnet152()
model_ft

3.5解释initialize_model函数

本小节只是截取pytorch官网的一个例子,用initialize_model说明在pytoch中迁移学习怎么使用,不属于本文代码

具体操作如下

        1.下载别人的模型参数,这里下载restnet152模型

        2.选择需要冻结的卷积层

        3.改变全连接层的输出个数,这里将1000改为102

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):# 选择合适的模型,不同模型的初始化方法稍微有点区别model_ft = Noneinput_size = 0if model_name == "resnet":""" Resnet152"""model_ft = models.resnet152(pretrained=use_pretrained) #下载resnet152模型set_parameter_requires_grad(model_ft, feature_extract) #选择冻结哪部分卷积层num_ftrs = model_ft.fc.in_features #全连接层的输入比方说全连接层是2048×1000,这就是2048.model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),nn.LogSoftmax(dim=1)) #原resnet152的全连接层输出是1000,自己模型需要的输出是102,进行改动。input_size = 224return model_ft, input_size

3.6迁移学习网络搭建

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU计算
model_ft = model_ft.to(device)# 模型保存
filename='checkpoint.pth'# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

3.7优化器

就是用该方法更新模型参数

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

3.8训练模块(可以理解为主函数)

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):since = time.time() #best_acc = 0"""checkpoint = torch.load(filename)best_acc = checkpoint['best_acc']model.load_state_dict(checkpoint['state_dict'])optimizer.load_state_dict(checkpoint['optimizer'])model.class_to_idx = checkpoint['mapping']"""model.to(device)val_acc_history = []train_acc_history = []train_losses = []valid_losses = []LRs = [optimizer.param_groups[0]['lr']]best_model_wts = copy.deepcopy(model.state_dict())for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度with torch.set_grad_enabled(phase == 'train'):if is_inception and phase == 'train':outputs, aux_outputs = model(inputs)loss1 = criterion(outputs, labels)loss2 = criterion(aux_outputs, labels)loss = loss1 + 0.4*loss2else:#resnet执行的是这里outputs = model(inputs)loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / len(dataloaders[phase].dataset)epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - sinceprint('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)scheduler.step(epoch_loss)if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

3.9开始训练

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

3.10微调

在2.9中得到的模型,是冻结了卷积层,只训练了全连接层,所以此时希望在此基础上再对卷积层进行训练。

for param in model_ft.parameters():param.requires_grad = True# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)# 损失函数
criterion = nn.NLLLoss()# Load the checkpoint,加载自己的模型checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

4.测试模型

4.1加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)# GPU模式
model_ft = model_ft.to(device)# 保存文件的名字
filename='seriouscheckpoint.pth'# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

4.2测试数据预处理

        1.测试数据处理方法需要跟训练时一直才可以

        2.crop操作的目的是保证输入的大小是一致的

        3.标准化操作也是必须的,用跟训练数据相同的mean和std,但是需要注意一点训练数据是在0-1上进行标准化,所以测试数据也需要先归一化

        4.PyTorch中颜色通道是第一个维度,跟很多工具包都不一样,需要转换

def process_image(image_path):# 读取测试数据img = Image.open(image_path)# Resize,thumbnail方法只能进行缩小,所以进行了判断if img.size[0] > img.size[1]:img.thumbnail((10000, 256))else:img.thumbnail((256, 10000))# Crop操作left_margin = (img.width-224)/2bottom_margin = (img.height-224)/2right_margin = left_margin + 224top_margin = bottom_margin + 224img = img.crop((left_margin, bottom_margin, right_margin,   top_margin))# 相同的预处理方法img = np.array(img)/255mean = np.array([0.485, 0.456, 0.406]) #provided meanstd = np.array([0.229, 0.224, 0.225]) #provided stdimg = (img - mean)/std# 注意颜色通道应该放在第一个位置img = img.transpose((2, 0, 1))return img

4.3数据展示

def imshow(image, ax=None, title=None):"""展示数据"""if ax is None:fig, ax = plt.subplots()# 颜色通道还原image = np.array(image).transpose((1, 2, 0))# 预处理还原mean = np.array([0.485, 0.456, 0.406])std = np.array([0.229, 0.224, 0.225])image = std * image + meanimage = np.clip(image, 0, 1)ax.imshow(image)ax.set_title(title)return ax

4.4提取测试数据集

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()model_ft.eval()if train_on_gpu:output = model_ft(images.cuda())
else:output = model_ft(images)

4.5计算提取数据集的预测结果

_, preds_tensor = torch.max(output, 1)preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

4.6展示预测结果

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2for idx in range (columns*rows):ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])plt.imshow(im_convert(images[idx]))ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

参考文献

1.6-训练结果与模型保存_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56377.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DAY03_Spring—SpringAOPAOP切入点表达式AOP通知类型Spring事务管理

目录 一 AOP1 AOP简介问题导入1.1 AOP简介和作用1.2 AOP中的核心概念 2 AOP入门案例问题导入2.1 AOP入门案例思路分析2.2 AOP入门案例实现【第一步】导入aop相关坐标【第二步】定义dao接口与实现类【第三步】定义通知类,制作通知方法【第四步】定义切入点表达式、配…

服务蓝图:提升和改善服务系统的工具

服务蓝图:提升和改善服务系统的工具 Service Blueprint 翻译成服务提供计划比较恰当 趣讲大白话:精细耕耘,才有好体验 【趣讲信息科技249期】 **************************** 西方擅长的是工具和方法 把一件事情透过工具和方法做到人人能懂 日…

TypeScript 中【class类】与 【 接口 Interfaces】的联合搭配使用解读

导读: 前面章节,我们讲到过 接口(Interface)可以用于对「对象的形状(Shape)」进行描述。 本章节主要介绍接口的另一个用途,对类的一部分行为进行抽象。 类配合实现接口 实现(impleme…

<van-empty description=““ /> 滚动条bug

使用 <van-empty description"" /> 时&#xff0c;图片出现了个滚动条&#xff0c;图片可以上下滑动。 代码如下&#xff1a; <block wx:if"{{courseList.length < 0}}"><van-empty description"" /> </block> <…

使用toad库进行机器学习评分卡全流程

1 加载数据 导入模块 import pandas as pd from sklearn.metrics import roc_auc_score,roc_curve,auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import numpy as np import math import xgboost as xgb …

Windows同时安装两个版本的JDK并随时切换,以JDK6和JDK8为例,并解决相关存在的问题(亲测有效)

Windows同时安装两个版本的JDK并随时切换&#xff0c;以JDK6和JDK8为例&#xff0c;并解决相关存在的问题&#xff08;亲测有效&#xff09; 1.下载不同版本JDK 这里给出JDK6和JDK的百度网盘地址&#xff0c;具体安装过程&#xff0c;傻瓜式安装即可。 链接&#xff1a;http…

生鲜蔬果小程序的完整教程

随着互联网的发展&#xff0c;线上商城成为了人们购物的重要渠道。其中&#xff0c;小程序商城在近年来的发展中&#xff0c;备受关注和青睐。本文将介绍如何使用乔拓云网后台搭建生鲜果蔬配送小程序&#xff0c;并快速上线。 首先&#xff0c;登录乔拓云网后台&#xff0c;进入…

2023-08-05 LeetCode每日一题(合并两个有序链表)

2023-08-05每日一题 一、题目编号 21. 合并两个有序链表二、题目链接 点击跳转到题目位置 三、题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例1&#xff1a; 示例2&#xff1a; 示例3&#xff1a; …

NLP:长文本场景下段落分割(文本分割、Text segmentation)算法实践----一种结合自适应滑窗的文本分割序列模型

NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法等 专栏详细介绍:NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型…

Leetcode-每日一题【剑指 Offer 10- I. 斐波那契数列】

题目 写一个函数&#xff0c;输入 n &#xff0c;求斐波那契&#xff08;Fibonacci&#xff09;数列的第 n 项&#xff08;即 F(N)&#xff09;。斐波那契数列的定义如下&#xff1a; F(0) 0, F(1) 1 F(N) F(N - 1) F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开…

C++20 协程(coroutine)入门

文章目录 C20 协程&#xff08;coroutine&#xff09;入门什么是协程无栈协程和有栈协程有栈协程的例子例 1例 2 对称协程与非对称协程无栈协程的模型无栈协程的调度器朴素的单线程调度器让协程学会等待Python 中的异步函数可等待对象M:N 调度器——C# 中的异步函数 小结 C20 中…

Mermaid系列之FlowChart流程图

一.欢迎来到我的酒馆 介绍mermaid下&#xff0c;Flowchat流程图语法。 目录 一.欢迎来到我的酒馆二.什么是mermiad工具三.在vs code中使用mermaid四.基本语法 二.什么是mermiad工具 2.1 mermaid可以让你使用代码来创建图表和可视化效果。mermaid是一款基于javascript语言的图表…