深度学习pytorch——多分类问题(持续更新)

回归问题 vs 分类问题(regression vs classification)

回归问题(regression)

1、回归问题的目标是使预测值等于真实值,即pred=y。

2、求解回归问题的方法是使预测值和真实值的误差最小,即minimize dist(pred,y),一般我们通过求其2-范数,再平方得到它的最小值,也可以直接使用1-范数。

分类问题(classification)

1、分类问题的目标是找到最大的概率,即maximize benchmark(accurcy)。

2、求解分类问题,第一种方法是找到真实值与预测值之间的最小距离,即minimize dist( p\theta(y | x), pr(y | x) )。第二种方法是找到真实值与预测值的最小差异,即minimize divergence( p\theta(y | x), pr(y | x) )

但是,为什么不直接就概率呢?

1、如果概率不发生改变,权重发生改变,就会导致梯度等于0,出现梯度离散的现象。

2、由于正确的数量是不连续的,因此造成梯度也是不连续的,会导致梯度爆炸、训练不稳定等问题。

二分类问题(Binary Classification)

给定一个函数 f :x ---> p(y = 1 | x),如果二分类的角度去研究这个问题。预测的方法是:如果p(y = 1 | x) > 0.5 ,则预测值为1,否则预测值为0。

以交叉熵的角度分析二分类问题:

首先将二分类问题实例化,是对于猫和狗的分类问题,根据概率之和等于1,我们可以得到狗的概率等于1减去猫的概率,即P(dog) = (1 - P(cat)),接着将其带入到交叉熵公式中,得到以下公式:

将具体问题扩展到 一般问题,得到如下公式:

分析以上公式,当y = 1 时,H (P, Q) = log(p);当y = 0 时,H (P, Q) = log(1 - p);这两种情况随着p的变化,单调性是相反的,进一步证明了交叉熵解决二分类问题的可行性。

多分类问题(Multi-class classification)

给定一个函数 f :x ---> p(y  | x) ,其中 [𝑝 𝑦 = 0 𝑥 , 𝑝 𝑦 = 1 𝑥 , … , 𝑝 𝑦 = 9 𝑥 。必须满足:所有的𝑝 (𝑦 |𝑥) ∈ [0, 1];所有的概率和\Sigma 𝑝 (𝑦 = 𝑖 |𝑥 )= 1。

如何让所有的概率和为1呢?

使用softmax函数,详情请看深度学习pytorch——激活函数&损失函数(持续更新)-CSDN博客

交叉熵(cross entropy)

1、交叉熵的特点:

(1)具有很高的不确定性

(2)度量很惊喜

2、交叉熵的公式:

3、交叉熵的值越高就代表不稳定性越大

(1)以代码的方式解释

可以清楚的观察到数据的分布越平衡,最后得到的熵值就越高,反之,熵值就越低。

import torch
a = torch.full([4],1/4)
print('1.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())a = torch.tensor([0.1,0.1,0.1,0.7])
print('2.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())a = torch.tensor([0.001,0.001,0.001,0.999])
print('3.a:',a)
print("entropy:",-(a*torch.log2(a)).sum())

(2)以理论的角度解释

给出Cross Entropy 的公式:

当Cross Entropy 和Entropy 这两个分布相等时,即H(p,q)=H(p),此时两个分布重合,此时Dkl就等于0。

当使用one-hot加密,我们可以得到Entropy = 1log1 = 0,即H(p)= 0,则此时满足H(p, q) = Dkl(p|q)的情况,此时如果对H(p,q)进行优化,相当于将Dkl(p|q)直接优化了,这是我们直接可以不断减小Dkl(p|q)的值,使预测值逐渐接近真实值,这就很好的解释了我们为什么要使用Cross Entropy。

为什么不使用MSE?

1、sigmoid + MSE 的模式会导致梯度离散的现象

2、收敛速度比较慢

通过下图可以很合理的证明以上两个原因的合理性:

3、但是有时我们再做一些前沿的技术时,会发现MSE效果要好于cross entropy,因为它的求解梯度较为简单。

 MSE VS Cross Entropy

Cross Entropy = sofymax + log + nll_loss,最后的结果都是一样的。

import torch
from torch.nn import functional as F
# MSE vs Cross Entropy
x = torch.randn(1,784)
w = torch.randn(10,784)
logists = x@w.t()
# 使用Cross Entropy
print(F.cross_entropy(logists,torch.tensor([3])))
# tensor(0.0194)
# 自己处理
pred = F.softmax(logists, dim = 1)
pred_log = torch.log(pred)
print(F.nll_loss(pred_log,torch.tensor([3])))
# tensor(0.0194)

多分类问题实战 

############# Logistic Regression 多分类实战(MNIST)###########
# (1)加载数据
# (2)定义网络
# (3)凯明初始化
# (4)training:实例化一个网络对象,构建优化器,迭代,定义loss,输出
# (5)testingimport  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transformsbatch_size=200 #Batch Size:一次训练所选取的样本数
learning_rate=0.01
epochs=10 #1个epoch表示过了1遍训练集中的所有样本,这里可以设置为 5# 加载数据
train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=batch_size, shuffle=True)# 在pytorch中的定义(a,b)a是ch-out输出,b是ch-in输入,也就是(输出,输入)
# 比如第一个可以理解为从784降维成200的层
w1, b1 = torch.randn(200, 784, requires_grad=True),\torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True),\torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True),\torch.zeros(10, requires_grad=True)# 凯明初始化,如果不进行初始化会出现梯度离散的现象
# torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')
torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)# 前向传播过程
def forward(x):x = x@w1.t() + b1x = F.relu(x)x = x@w2.t() + b2x = F.relu(x)x = x@w3.t() + b3x = F.relu(x)  #这里千万不要用softmax,因为之后的crossEntropyLoss中自带了。这里可以用relu,也可以不用。return x  #返回的是一个logits(即没有经过sigmoid或者softmax的层)# 优化器
optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
criteon = nn.CrossEntropyLoss()for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28) # 将二维的图片数据打平 [200,784],第5课用的 x = x.view(x.size(0), 28*28)logits = forward(data) #这里是网络的输出loss = criteon(logits, target)  # 调用cross—entorpy计算输出值和真实值之间的lossoptimizer.zero_grad()loss.backward()# print(w1.grad.norm(), w2.grad.norm())optimizer.step()# 每 batch_idx * 100=20000输出结果 每100个bachsize打印输出的结果,看看loss的情况if batch_idx % 100 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))# len(data)---指的是一个batch_size;
# len(train_loader.dataset)----指的是train_loader这个数据集中总共有多少张图片(数据)
# len(train_loader)---- len(train_loader.dataset)/len(data)---就是这个train_loader要加载多少次batch# 测试网络---test----每训练完一个epoch检测一下测试结果# 因为每一个epoch已经优化了batch次参数,得到的参数信息还是OK的test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28 * 28)logits = forward(data) #logits的shape=[200,10],--200是batchsize,10是最后输出结果的10分类test_loss += criteon(logits, target).item()  #每次将test_loss进行累加   #target=[200,1]---每个类只有一个正确结果pred = logits.data.max(1)[1]# 这里losgits.data是一个二维数组;其dim=1;max()---返回的是每行的最大值和最大值对应的索引# max(1)----是指每行取最大值;max(1)[1]---取每行最大值对应的索引号# 也可以写成 pred=logits.argmax(dim=1)correct += pred.eq(target.data).sum()#预测值和目标值相等个数进行求和--在for中,将这个test_loader中相等的个数都求出来test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))"""
影响training的因素有:
1、learning rate过大
2、gradient vanish---梯度弥散(参数梯度为0,导致loss保持为常数,loss长时间得不到更新)
3、初始化问题----参数初始化问题
"""

课时50 多分类问题实战_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/564817.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matlab|【免费】智能配电网的双时间尺度随机优化调度

目录 1 主要内容 基础模型 2 部分代码 3 部分程序结果 4 下载链接 1 主要内容 该程序为文章《Two-Timescale Stochastic Dispatch of Smart Distribution Grids》的源代码,主要做的是主动配电网的双时间尺度随机优化调度,该模型考虑配电网的高效和安…

Stable diffusion(四)

训练自己的Lora 【DataSet】【Lora trainer】【SD Lora trainer】 前置的知识 batch size:模型一次性处理几张图片。一次性多处理图片,模型能够综合捕捉多张图片的特征,最终的成品效果可能会好。但是处理多个batch size也意味着更大的显存…

ffmpeg实现媒体流解码

本期主要讲解怎么将MP4媒体流的视频解码为yuv,音频解码为pcm数据;在此之前我们要先了解解复用和复用的概念; 解复用:像mp4是由音频和视频组成的(其他内容流除外);将MP4的流拆分成视频流(h264或h265等)和音频流(AAC或mp3等); 复用:就是将音频和视频打包成MP4或者fl…

Linux基础-Makefile

目录 一、Make简介 二、Makefile基本结构 示例: 补充(Makefile): 伪目标: 三、创建和使用变量 变量定义的方式: 简单方式: 递归方式: 用?定义变量 为变量添加值 预定义变量 例 自动变量 例…

【数据结构】考研真题攻克与重点知识点剖析 - 第 1 篇:绪论

前言 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术…

【boost_search搜索引擎】1.获取数据源

boost搜索引擎 1、项目介绍2、获取数据源 1、项目介绍 boost_search项目和百度那种不一样,百度是全站搜索,而boost_search是一个站内搜索。而项目的宏观上实现思路就如同图上的思路。 2、获取数据源 我们要实现一个站内搜索,我们就要有这…

每日一题 --- 两两交换链表中的节点[力扣][Go]

两两交换链表中的节点 题目:24. 两两交换链表中的节点 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。 示例 1&a…

详细剖析多线程2----线程安全问题(面试高频考点)

文章目录 一、概念二、线程不安全的原因三、解决线程不安全问题--加锁(synchronized)synchronized的特性 四、死锁问题五、内存可见性导致的线程安全问题 一、概念 想给出⼀个线程安全的确切定义是复杂的,但我们可以这样认为: 在多…

Web前端—浏览器渲染原理

浏览器渲染原理 浏览器渲染原理渲染时间点渲染流水线1. 解析HTML—Parse HTML2. 样式计算—Recalculate Style3. 布局—Layout4. 分层—Layer5. 绘制—Paint6. 分块—Tiling7. 光栅化—Raster8. 画—Draw完整过程 面试题1. 浏览器是如何渲染页面的?2. 什么是 reflow…

IDEA, Pycharm, Goland控制台乱码

IDEA, Pycharm, Goland控制台乱码 问题描述: 控制台出现����等乱码 复现频率: 总是 解决方案: 以IDEA为例 添加 -Dfile.encodingUTF-8位置 idea64.exe.vmoptions 在安装idea的bin目录idea.vmoptions idea客户端 示意图

vue3怎么读取本地json数据

在Vue 3中&#xff0c;可以使用fetch API或其他HTTP客户端来读取本地JSON数据。以下是一个使用fetch的示例&#xff1a; <template><div><h1>本地JSON数据</h1><div v-if"data">{{ data }}</div></div> </template>…

Mysql数据库:事务管理

目录 一、Mysql事务的概述 1、Mysql事务的概念 2、事务的ACID四大特性 3、事务之间的相互影响 4、事务的四种隔离级别 5、MySQL与Oracle自动提交事务的区别 6、事务隔离级别的作用范围 二、Mysql事务相关操作 1、查询和设置事务隔离级别 1.1 全局级事务隔离级别 1.1…