本地部署大模型的几种工具(上-相关使用)

目录

前言

为什么本地部署

目前的工具

vllm

介绍

下载模型

安装vllm

运行

存在问题

chatglm.cpp

介绍

下载

安装

运行

命令行运行

webdemo运行

GPU推理

ollama

介绍

下载

运行

运行不同参数量的模型

存在问题

lmstudio

介绍

下载

使用

下载模型文件

加载模型


前言

为什么本地部署

正常我们要调用大模型,就需要将企业或个人信息传递到外部的大模型服务器,这种情况在目前极为重视数据安全的情况下,可能就有问题了。但是,本地部署大模型就没有这个问题,本地部署大模型后,不需要联网即可调用大模型,就没有了通过调用外部大模型导致数据泄露的问题。

再一个一说起大模型,不管训练还是推理,一般都是需要GPU。能不能有一些方法实现本地也可以部署大模型进行推理?

以上也就是写这一篇的初衷了。

目前的工具

目前有vllm、chatglm.cpp(llama.cpp也类似是通过C++实现)--提供编程能力,可以命令行运行,可以提供webapi

Ollama--命令行运行,可以提供webapi

lmstudio--纯界面操作

vllm

介绍

vllm主要作用其实是可以提高推理性能,但是必须在linux下运行,而且必须有GPU

官网地址

vllm官网 Welcome to vLLM! — vLLMhttps://docs.vllm.ai/en/latest/

下载模型

这里以下载千问7B为例,由于模型文件会比较大,因此安装git的lfs插件

git lfs install
git clone https://huggingface.co/Qwen/Qwen-7B-Chat

安装vllm

安装的话,为了避免python环境冲突问题,先通过conda创建一个新的虚拟环境

然后pip install vllm

也可以先从github下载,再去安装

vllm github地址https://github.com/vllm-project/vllm

运行

python -m vllm.entrypoints.openai.api_server  --model="Qwen/Qwen-7B-Chat" --trust-remote-code --port 1234

注意:--model参数这里,如果之前已经下载了模型文件,这里是参数值改为模型文件路径,否则设置为模型名,然后会自动下载

注意2:通过aipost工具调用大模型,model参数需要和如上cmd运行命令的--model参数一致,否则会提示找不到model,这个我觉得是比较不好的一点

存在问题

1)通过apipost工具调用webapi,回答完,还会继续输出其他内容

一样,没搞懂为啥

补充:运行增加VLLM_USE_MODELSCOPE=True 推理速度会快很多,即

VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server  --model="Qwen/Qwen-7B-Chat" --trust-remote-code --port 1234

说是通过魔塔进行了加速,但是其所以然还没搞明白。

chatglm.cpp

介绍

chatglm.cpp主要通过C++编译,实现性能的提升

下载

git clone --recursive https://github.com/li-plus/chatglm.cpp.git && cd chatglm.cpp
git submodule update --init --recursive

第二句主要是用于当前代码还引用了其他第三方代码库的情况,用于嵌套更新代码状态

安装

安装相关包

python3 -m pip install torch tabulate tqdm transformers accelerate sentencepiece

用于 convert.py 将 ChatGLM-6B 转换为量化的 GGML 格式。要将 fp16 原始模型转换为 q4_0(量化 int4)GGML 模型,请运行:

python3 chatglm_cpp/convert.py -i THUDM/chatglm3-6b -t q4_0 -o chatglm3-ggml.bin

运行

命令行运行

第一步:使用 CMake 配置项目并在当前目录下创建一个名为 "build" 的构建目录

cmake -B build

第二步:使用先前生成的构建系统文件在构建目录 "build" 中构建项目,采用并行构建和 Release 配置

cmake --build build -j --config Release

第三步:运行

./build/bin/main -m chatglm3-ggml.bin -p 你好

注意:这里cmake在linux下没问题,在windows下需要通过VS(Visual Studio)安装C++ Cmake工具

webdemo运行

python3 ./examples/web_demo.py -m chatglm3-ggml.bin

注意:这里可能会出错,提示找不到chatglm_cpp,这个时候可以先pip install .(.就是代表安装当前代码包,或.替换为chatglm_cpp也可以,或者去chatglm.cpp项目的Github网站--release下载对应系统对应python版本的whl文件进行安装也可以)

GPU推理

chatglm.cpp主要是用于让普通CPU也可以进行推理,因此默认它是CPU推理。但是不妨碍它可以GPU推理,毕竟效率更高。

cmake的时候,增加-DGGML_CUBLAS=ON,即可实现命令行运行通过GPU推理

webdemo运行的话,也需要对pip install .增加同样的参数,完整命令:CMAKE_ARGS="-DGGML_CUBLAS=ON" pip install .,这个时候再次运行webdemo即可实现GPU推理

ollama

介绍

ollama主要简化了部署大模型的复杂度

github地址:ollama/ollama:启动并运行 Llama 2、Mistral、Gemma 和其他大型语言模型。 (github.com)https://github.com/ollama/ollama

github上可以看ollama相关介绍,包括如何使用

下载

ollama一开始主要支持linux,docker也可以,目前有windows下的预览版可以下载

ollama官网 windows预览版下载https://ollama.com/download/OllamaSetup.exe

运行

安装完成即可通过cmd窗口使用ollama命令来运行大模型(注意第一次会先下载模型文件,我这里用的llama2的大小是4G多,还可以)

接下来就可以输入进行大模型对话了

不过命令行在实际应用中不方便,那么也可以通过ollama实现webapi调用方式

ollama serve--启用server模式

ollama run llama2(这里就是具体模型名称)

接下来即可通过postman、apipost等工具调用大模型了

注意这里地址是:localhost:11434/api/chat

运行不同参数量的模型

同一个模型,一般会有多个参数量,一般有7B、13B

如上运行ollama run llama2,其实是按默认参数量下载并运行模型了,也可以设置参数量

如:ollama run gemma:2b

:2b即具体参数量

存在问题

1)命令行下速度很快,但是webapi方式就很慢。可能还是在windows下还是预览版,没那么稳定

还没搞懂咋回事,现在只是初步知道了怎么用。后面再试试其他模型,看看是不是模型的问题

lmstudio

介绍

lmStudio是一个很简单的大模型使用工具,直接安装客户端,完全界面操作,无需编辑代码、无需运行命令,即可纯界面操作来使用大模型。

非常适合不懂技术的人员使用

下载

访问lmstudio官网LM Studio 官网 - Discover, download, and run local LLMshttps://lmstudio.ai/

选择对应操作系统的版本下载即可 

使用

下载模型文件

打开软件默认界面,就是一个搜索框,输入你需要使用的模型名,点击Go进行搜索。

常用的模型,如LLama2、Gemma、QWen等

注:这里只能是开源大模型

在搜索结果页面,左侧是搜索结果,点击左侧其中一个结果,右侧显示出所有可以下载的文件,主要是量化参数不一样,一般选择q4_0的即可,选择对应文件下载即可。

页面最下方会显示下载进度

加载模型

模型文件下载完成,点击最左侧“AI Chat”图标,在最上方有个模型列表,选择下载的模型文件,会自动加载模型文件

接下来,就可以进行模型对话了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/568588.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Functional Affordances】机器人manipulation

文章目录 1. Robo-ABC: Affordance Generalization Beyond Categories via Semantic Correspondence for Robot Manipulation摘要和结论引言相关工作模型框架实验 2. Click to Grasp: Zero-Shot Precise Manipulation via Visual Diffusion Descriptors摘要和结论引言模型框架实…

OpenLayers基础教程——WebGLPoints图层样式的设置方法

1、前言 前一篇博客介绍了如何在OpenLayers中使用WebGLPoints加载海量数据点的方法,这篇博客就来介绍一下WebGLPoints图层的样式设置问题。 2、样式运算符 在VectorLayer图层中,我们只需要创建一个ol.style.Style对象即可,WebGLPoints则不…

【第三方登录】Google邮箱

登录谷歌邮箱开发者 https://console.developers.google.com/ 先创建项目 我们用的web应用 设置回调 核心主要: 1.创建应用 2.创建客户端ID 3.设置域名和重定向URL 4.对外公开,这样所有的gmail邮箱 都能参与测试PHP代码实现 引入第三方包 h…

软件著作权有哪些作用 好处

随着信息技术的迅猛发展,软件产业已成为全球经济增长的重要引擎。在这个背景下,软件著作权的重要性日益凸显。软件著作权,是指软件的开发者或者其他权利人依据有关著作权法律的规定,对于软件作品所享有的各项专有权利。那么&#…

【应用笔记】LAT1305+使用STM32+TT类型IO的注意事项

1. 概述 在 STM32 系列 MCU 中, 除了一些特殊管脚外,绝大多数管脚都可以分类为 FT (兼容5V 信号)或 TT(兼容 3V3 信号)类型的 IO,由于 MCU 内部设计的不同, TT IO 相比 5V IO 有更多的限制,下面…

Fiddler关闭后打不开网页

打开网络找到代理 把代理给关闭就可以了

面试算法-103-对链表进行插入排序

题目 给定单个链表的头 head ,使用 插入排序 对链表进行排序,并返回 排序后链表的头 。 插入排序 算法的步骤: 插入排序是迭代的,每次只移动一个元素,直到所有元素可以形成一个有序的输出列表。 每次迭代中,插入排序…

【 Vue 3 】Vue3.0所采用的CompositionApi与Vue2.x使用的Options Api 有什么不同?

1. 开始之前 Composition API可以说是Vue3的最大特点,那么为什么要推出Composition Api,解决了什么问题? 通常使用Vue2开发的项目,普遍会存在以下问题: 代码的可读性随着组件变大而变差每一种代码复用的方式,都存在缺点TypeScr…

什么是正向代理和反向代理?

从字面意思上看,代理就是代替处理的意思,一个对象有能力代替另一个对象处理某一件事。 代理,这个词在我们的日常生活中也不陌生,比如在购物、旅游等场景中,我们经常会委托别人代替我们完成某些任务。在技术领域&#…

工业级POE交换机的SSH配置步骤

工业级POE交换机的SSH(Secure Shell)配置可以通过以下步骤进行: 1. 连接到POE交换机:使用一个支持SSH协议的终端工具(如PuTTY)连接到POE交换机的管理接口。 2. 登录到POE交换机:输入正确的用户…

nuxt3使用自定义组件

说明:nuxt3只有components文件夹里面的页面会自动注册为组件,但是有些单独的页面也需要组件,但是也不是全局的,所以写在pages里面的页面,需要手动注册为组件使用 1.创建组件 在pages里面创建页面文件夹,在…

CQBF氟塑料磁力泵

引言: 在当今的工业制造和化学处理领域,对高效率、耐用性和安全性的需求日益增长。CQBF氟塑料磁力泵作为这一需求下的创新产品,已经成为许多企业提升工艺水平和确保环境安全的关键工具。本文旨在深入探讨CQBF氟塑料磁力泵的技术特点、应用优势…