【STM32嵌入式系统设计与开发】——12IWDG(独立看门狗应用)

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、ActiveBeep工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
      • (5)系统时间初始化函数( SystemTinerInit())
      • (6)等待计时函数( WaitTimerOut())
      • (7)系统时间定时器中断服务函数( TIM3_IRQHandler())
      • (8)获取系统计时时间函数( GetSystemTimer())
      • (9)外部中断4初始化函数( EXTIX_Init())
      • (10)外部中断4服务函数( EXTI4_IRQHandler())
      • (11)独立看门狗初始化函数(IWDG_Init())
      • (12)喂独立看门狗函数(IWDG_Feed())
    • 3、宏定义
      • 定时器宏定义
      • 中断宏定义
      • 独立看门狗宏定义
    • 4、知识链接
      • (1)独立看门狗
      • (2)独立看门狗时间计算
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
DK1(底板) ————————> PC4
D1 (底板) ————————> PA8
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、ActiveBeep工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“9_IWDG”。
在这里插入图片描述

步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“IWDG.uvprojx”。并删除output/obj和output/lst中的所有文件。
请添加图片描述

步骤3:运行“Exit.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“IWDG”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
请添加图片描述
步骤4:复制“2_SingleKey”中的"1_LED"和"SingleKey"文件复制到hardware中。
请添加图片描述
步骤5:在“system”中新建“iwdg”文件夹,并新建“iwdg.c”和“iwdg.h”文件。在这里插入图片描述
步骤5:工程组文件中添加“led.c”和“SingleKey.c”文件。
请添加图片描述
步骤5:工程组文件中添加“iwdg.c”和“iwdg.h”文件。
在这里插入图片描述
步骤6:目标选项添加添加头文件路径。
在这里插入图片描述

2、函数编辑

(1)主函数编辑

置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态。
在这里插入图片描述
步骤1:端口初始化准备

	//函数初始化,端口准备delay_init();                   //启动滴答定时器usart1_init(9600);              //USART1初始化LED_Init();                     //板载LED初始化SystemTinerInit(1000-1,7200-1); //系统时间初始化 定时100msExpKeyInit();                   //开发板按键初始化LED = 0;  delay_ms(800);                  //让人看得到灭IWDG_Init(4,625);               //与分频数为64,重载值为625,溢出时间为1sLED = 1;delay_ms(800);

在这里插入图片描述
步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

	while(1){	IWDG_Feed();//如果DK1按下,则喂狗LED = 0;delay_ms(100);LED = 1;delay_ms(100);if(!DK1)    //按下DK1按键delay_ms(1000);delay_ms(20);}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************@Function  : USART1初始化@Parameter : bound : 波特率 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体/* 时钟使能:启用 USART1 和 GPIOA 的时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);/* 引脚复用配置 */  // 配置 PA9 为复用推挽输出,用于 USART1 的 TXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO// 配置 PA10 为浮空输入,用于 USART1 的 RXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO/* NVIC 中断配置 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC/* USART1 配置 */ USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1/*中断配置*/USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	USART_Cmd(USART1, ENABLE);                                                  //启用USART1USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************@Function  : USART数据发送函数@Parameter : Data 	 :要发送的数据缓存.Lenth  :发送长度@Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{uint8_t uNum = 0;if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1{USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存{USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];}USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送}return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

/*********************************************************************@Function  : USART1中断服务函数@Parameter : N/A @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空{USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出} else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲{Clear = USART1 -> SR;                                                                         // 读SR位Clear = USART1 -> DR;                                                                       // 读DR位,USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          {USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区}USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据}if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空{USART1->DR = \((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len){   USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了} 		}}

在这里插入图片描述

(5)系统时间初始化函数( SystemTinerInit())

Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz;初始化TIM3定时器,配置定时器的周期值、预分频值、计数模式等参数,并使能定时器及其中断

/*********************************************************************@Function  : 系统时间初始化@Parameter : arr:自动重装值。psc:时钟预分频数@Return    : N/A@Read 			:Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz
**********************************************************************/
void SystemTinerInit(uint16_t arr, uint16_t psc)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;               // 定义TIM基本参数结构体NVIC_InitTypeDef NVIC_InitStructure;                         // 定义中断优先级配置结构体/* 时钟使能 */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);         // 使能TIM3时钟/* TIM配置 */TIM_TimeBaseStructure.TIM_Period = arr;                      // 设置定时器的周期值TIM_TimeBaseStructure.TIM_Prescaler = psc;                   // 设置定时器的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;      // 设置时钟分频因子为1TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 设置计数模式为向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);              // 初始化TIM3定时器/* 允许中断 */TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);                   // 使能TIM3更新(溢出)中断/* NVIC 配置 */NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;              // 设置TIM3中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    // 设置TIM3中断的抢占优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;           // 设置TIM3中断的子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              // 使能TIM3中断通道NVIC_Init(&NVIC_InitStructure);                              // 初始化NVIC/* 使能TIMx */TIM_Cmd(TIM3, ENABLE);                                       // 使能TIM3定时器
}

(6)等待计时函数( WaitTimerOut())

定时器超时检测功能,根据传入的参数 gTimer 和系统时钟计数器,判断定时器是否超时,并返回相应的状态。

/*********************************************************************@Function  : 等待计时@Parameter : gTimer :等待时间,100ms一个单位@Return    : 1表示超时,0表示未超时
**********************************************************************/
uint8_t WaitTimerOut(uint32_t gTimer)
{	uint32_t GTr = 0;                         // 定义变量用于存储定时器剩余时间if(gTimer==0) return 1;                   // 如果等待时间为0,则直接返回1,表示不等待GTr = SystemTimer % gTimer;	              // 计算定时器剩余时间if((GTr==0) && (!Rti) && (Gti != gTimer)) // 如果定时器剩余时间为0,且上次未检测到超时,并且当前定时器时间不等于上次记录的时间{ Rti=1;                                // 设置标志表示检测到定时器超时Gti = gTimer;                         // 更新记录的定时器时间return 1;                             // 返回1表示超时}else if((GTr!=0) && (Rti))                // 如果定时器剩余时间不为0,且上次检测到超时,则将标志置为0Rti=0;if(!GetTimer) GetTimer = SystemTimer;	  // 如果记录定时器开始时间为0,则将其设置为当前系统时间if(SystemTimer - GetTimer == gTimer)      // 如果当前系统时间减去记录的定时器开始时间等于设定的等待时间,则返回1表示超时{ GetTimer = 0;                         // 将记录的定时器开始时间清零,准备下一次记录return 1;                             // 返回1表示超时}return 0;                                 // 返回0表示未超时
}

在这里插入图片描述

(7)系统时间定时器中断服务函数( TIM3_IRQHandler())

实现TIM3定时器的中断服务程序,每次定时器溢出时,增加 SystemTimer 计数值,并在计数到60时归零,同时清除中断标志位。

/*********************************************************************@Function  : 系统时间定时器中断服务函数@Parameter : N/A@Return    : N/A
**********************************************************************/
void TIM3_IRQHandler(void)   
{	// 检查定时器更新中断是否触发if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) // 溢出中断{SystemTimer++;                                // 系统时间计数器加1if(SystemTimer == 60)	                        // 如果系统时间计数器达到60,则重置为0,并且清零记录的定时器开始时间{	SystemTimer = 0;GetTimer = 0;}}// 清除定时器更新中断标志位TIM_ClearITPendingBit(TIM3, TIM_IT_Update);     // 清除中断标志位
}

在这里插入图片描述

(8)获取系统计时时间函数( GetSystemTimer())

/*********************************************************************@Function  : 获取系统计时时间@Parameter : N/A@Return    : N/A
**********************************************************************/
uint32_t GetSystemTimer(void)
{return SystemTimer;
}

在这里插入图片描述

(9)外部中断4初始化函数( EXTIX_Init())

/*********************************************************************@Function  : 外部中断4初始化@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTIX_Init(void)
{EXTI_InitTypeDef EXTI_InitStructure;                      // 定义外部中断配置结构体NVIC_InitTypeDef NVIC_InitStructure;                      // 定义中断控制器配置结构体/*时钟使能*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);	      // 使能 AFIO 时钟,用于配置外部中断的映射/*中断线配置*/   GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource4); // 配置外部中断线,将 PC4 映射到外部中断4EXTI_InitStructure.EXTI_Line = EXTI_Line4;	              // 设置外部中断线为 EXTI4EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;	      // 设置外部中断模式为中断模式EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;     // 设置触发方式为下降沿触发EXTI_InitStructure.EXTI_LineCmd = ENABLE;                   // 使能外部中断线EXTI_Init(&EXTI_InitStructure);	 	                      // 初始化外部中断配置/*NVIC配置*/NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;	          // 设置中断向量为外部中断4NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;// 设置抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03;       // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;	          // 使能外部中断4NVIC_Init(&NVIC_InitStructure);                             // 初始化中断控制器配置/*关闭蜂鸣器*/beep = 0;                                                 // 初始化蜂鸣器状态为关闭
}

(10)外部中断4服务函数( EXTI4_IRQHandler())

/*********************************************************************@Function  : 外部中断4服务程序@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTI4_IRQHandler(void)
{delay_ms(10);//消抖if(DK1==0)				 beep =!beep;	EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位  
}

在这里插入图片描述

(11)独立看门狗初始化函数(IWDG_Init())

/*********************************************************************@Function  : 初始化独立看门狗@Parameter : prer : 分频数:0~7(只有低3位有效!)rlr  : 重装载寄存器值:低11位有效.@Return    : N/A@Read 			: 1、分频因子=4*2^prer.但最大值只能是256!2、时间计算(大概):Tout=((4*2^prer)*rlr)/40 (ms).
**********************************************************************/
void IWDG_Init(uint8_t prer,uint16_t rlr) 
{	IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);  //使能对寄存器IWDG_PR和IWDG_RLR的写操作IWDG_SetPrescaler(prer);                       //设置IWDG预分频值:设置IWDG预分频值为64IWDG_SetReload(rlr);                           //设置IWDG重装载值IWDG_ReloadCounter();                          //按照IWDG重装载寄存器的值重装载IWDG计数器IWDG_Enable();                                 //使能IWDG
}

在这里插入图片描述

(12)喂独立看门狗函数(IWDG_Feed())

/*********************************************************************@Function  : 喂独立看门狗@Parameter : N/A@Return    : N/A@Read 			: 不喂狗会自动复位系统				
**********************************************************************/
void IWDG_Feed(void)
{   IWDG_ReloadCounter();                          //重新加载						   
}

在这里插入图片描述

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

#include ".\iwdg\iwdg.h"/***********Hardweare***************/
#include "led.h"
#include "SingleKey.h"

在这里插入图片描述

步骤2:添加中断源文件所需的头文件

#include ".\iwdg\iwdg.h"
#include "stm32f10x_iwdg.h" 

在这里插入图片描述

步骤3:添加宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述
步骤4:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述
步骤5:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{uint8_t Usart_Rx_Len;          // 接收缓冲区长度uint8_t Usart_Tx_Len;          // 发送缓冲区长度uint8_t Usart_Rx_Num;          // 接收数据计数uint8_t Usart_Tx_Num;          // 发送数据计数uint8_t Usart_Rc_State;        // 接收状态标志位uint8_t Usart_Tc_State;        // 发送状态标志位char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区char Usart_Rx_Data[USART_RX_LEN];   // 接收数据char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述
步骤6:定义一个串口数组变量

USART_DataTypeDef USART_DataTypeStr={0};

在这里插入图片描述

定时器宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述

步骤2:添加函数声明

void SystemTinerInit(uint16_t arr,uint16_t psc);//系统时间初始化函数
uint32_t GetSystemTimer(void);                  //获取系统计时时间函数
uint8_t WaitTimerOut(uint32_t gTimer);          //等待计时函数

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

中断宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述
步骤2:添加函数声明

void EXTIX_Init(void);	

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

独立看门狗宏定义

步骤1:创建一个宏定义保护

#ifndef __IWDG_H
#define __IWDG_H#endif

在这里插入图片描述
步骤2:添加函数声明

void IWDG_Init(uint8_t prer,uint16_t rlr);
void IWDG_Feed(void);

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

4、知识链接

(1)独立看门狗

在这里插入图片描述

在 STM32 单片机中,独立看门狗也是类似的。它是一个内置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态,以防止系统崩溃或者出现不可预料的问题。就像在厨房里一样,独立看门狗在单片机中扮演着保护系统安全的角色。

(2)独立看门狗时间计算

初始化独立看门狗为1S:
IWDG_Init(uint8_t prer,uint16_t rlr)
时间计算(大概):Tout=((4*2^prer)rlr)/40 (ms)
分频因子=4
2^prer.
但最大值只能是256!
1000ms = 4x2^4x625/40ms

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/571607.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SAP_ABAP_MM_安全库存_设计方案+实现代码(MARD_MBEW )_ALV_行列控制动态编辑

SAP ABAP 顾问&#xff08;开发工程师&#xff09;能力模型-CSDN博客文章浏览阅读959次。目标&#xff1a;基于对SAP abap 顾问能力模型的梳理&#xff0c;给一年左右经验的abaper 快速成长为三年经验提供超级燃料&#xff01;https://blog.csdn.net/java_zhong1990/article/de…

短期通过PMP考试该如何备考?

不得不提到&#xff0c;新版本的考纲确实有些挑战性。我想和大家分享一下我的考试感受。个人认为新考纲的难度相对较高&#xff0c;至少比之前的冲刺模拟试题难度要大。新考纲的难点主要体现在两个方面&#xff1a;一是灵活变通的题目&#xff0c;二是混合题目数量比预期多得多…

Netty教程之NIO基础

NIO 介绍 NIO 全称java non-blocking IO&#xff08;非阻塞 I/O&#xff09;&#xff0c;后续提供了一系列改进的输入/输出的新特性&#xff0c;被统称为 NIO(即 New IO)&#xff0c;是同步非阻塞的。 阻塞和非阻塞是进程在访问数据的时候&#xff0c;数据是否准备就绪的一种…

Springboot:Actuator监控

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、Actuator介绍 二、集成步骤 三、重要端点介绍 1、/actuator 2、/actuator/env 3、/actuator/heapdump 4、/actuator/metrics 5、/actuator/shutdown 6、/l…

HWM豪迈电子听漏仪维修相关仪XMIC-lite DXmic-lite

漏水检测系列仪器维修Leakage ManagemHWM豪迈电子听漏仪维修XMIC-lite DXmic-liteent检测仪器包括&#xff1a;Xmic电子听漏仪维修、Xmic-lite电子听漏仪&#xff1b;DXmic&#xff1b;DXmic-lite等系列。也叫电子地面麦克风,用来放大水从带有压力的自来水管道中泄漏出来产生的…

Go——结构体

Go语言中没有类的概念&#xff0c;也不支持类的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。 一. 类型别名和自定义类型 1.1 自定义类型 在Go语言中有一些基本的数据类型&#xff0c;如string&#xff0c;整型&#xff0c;…

【随笔】Git -- 常用命令(四)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

Element

1、Element 基本使用 1.1、Element介绍 Element&#xff1a;网站快速成型工具。是饿了么公司前端开发团队提供的一套基于Vue的网站组件库。 使用Element前提必须要有Vue。 组件&#xff1a;组成网页的部件&#xff0c;例如超链接、按钮、图片、表格等等~ Element官网&#…

python实现图片压缩

首先 pip install Pillow compression_level参数&#xff0c;该参数的范围从0到100&#xff0c;其中0表示最小尺寸&#xff08;最高压缩&#xff09;&#xff0c;100表示最大质量&#xff08;最小压缩&#xff09;。这个脚本将尝试在保持图片可识别性的同时&#xff0c;尽可能…

Java_16 移动零

移动零 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0] 示例 2: 输入: nums [0]…

uniapp对接极光推送(国内版以及海外版)

勾选push&#xff0c;但不要勾选unipush 国内版 网址&#xff1a;极光推送-快速集成消息推送功能,提升APP运营效率 (jiguang.cn) 进入后台&#xff0c;并选择对应应用开始配置 配置安卓包名 以及ios推送证书&#xff0c;是否将生产证书用于开发环境选择是 ios推送证书…

如何将python项目转变成deb安装包

先将python项目转变成可执行文件 1. 首先确保你的python项目可以正常执行 2.安装pyinstaller模块&#xff0c;pip install pyinstaller -i Simple Index 3.确定好你的项目的文件入口&#xff0c;也就是运行的文件.py 4. 开始打包成单文件&#xff0c;pyinstaller -F <第…