【论文速读】| 对大语言模型解决攻击性安全挑战的实证评估

本次分享论文为:An Empirical Evaluation of LLMs for Solving Offensive Security Challenges

基本信息

原文作者:Minghao Shao, Boyuan Chen, Sofija Jancheska, Brendan Dolan-Gavitt, Siddharth Garg, Ramesh Karri, Muhammad Shafique

作者单位:纽约大学、纽约大学阿布扎比分校

关键词:大语言模型,网络安全,攻击性挑战,CTF竞赛

原文链接:

https://arxiv.org/pdf/2402.11814v1.pdf

开源代码:

https://github.com/NickNameInvalid/LLM_CTF

论文要点

论文简介:随着大语言模型(LLMs)技术的日益兴起,它们在理解和解决CTF(Capture The Flag)挑战方面的应用也逐渐增多。然而,尚未有研究对LLMs在完全自动化流程中解决CTF挑战的有效性进行全面评估。为此,本研究旨在探索LLMs在该领域的应用潜力,并设计了两种CTF解题流程:人机交互式(HITL)和完全自动化。这两种流程的目的是评估LLMs在处理一系列特定CTF挑战时的性能,这些挑战通过提供相关问题信息来激发模型的解题过程。通过与人类参赛者在相同挑战上的表现进行对比,研究者观察到LLMs的解题成功率已超过普通人类参赛者。本研究全面评价了LLMs在解决现实世界中的CTF挑战能力,并覆盖了从实际竞赛到完全自动化流程的各个阶段。研究成果不仅支持了LLMs在网络安全教育中的应用,同时也为系统性评估LLMs在网络安全攻击能力方面的潜力提供了新的研究路径。

研究背景:CTF挑战赛是网络安全领域一种广受欢迎的竞赛形式,涉及密码学、逆向工程、网络利用等多个领域。随着LLMs的出现和进步,研究人员开始探索并解决在此类挑战中的潜力。

研究贡献:

1.评估了六种不同LLMs在解决26个多样化CTF问题上的熟练程度。

2.构建了使用LLMs解决CTF问题的两种工作流程,并展示了它们的成功率。

3.对LLMs在处理CTF挑战时遇到的典型短板进行了全面分析,揭示了完全依赖LLMs而不进行人类干预的局限性。

引言

近年来,大语言模型(LLMs),已在自然语言处理、编程任务和对话生成等多个领域展现出卓越的性能。本研究旨在探索LLMs在网络安全领域,特别是在解决CTF(Capture The Flag)挑战方面的应用潜力。为此,研究团队在纽约大学举办的CSAW竞赛中特别引入了LLM攻击挑战。在此过程中,团队收集了参与者利用LLMs提供的“提示”来解决一系列CTF挑战的相关数据,并在此基础上进行了详尽的分析。通过这项研究,研究者期望能够更深入地理解LLMs在网络安全实战中的应用价值和效果。

背景知识

CTF挑战赛是一种模拟真实世界中的安全漏洞和攻击场景的竞赛。在这类竞赛中,参与者需运用其网络安全知识和技能来识别漏洞、编写利用代码,并最终实现“夺旗”目标。随着大语言模型(LLMs)技术的兴起,研究团队着手研究这些模型是否具备理解和解决这些高度专业化挑战的能力。通过这一探索,旨在评估LLMs在网络安全领域的实际应用潜力。

论文方法

理论背景:在探究不同大语言模型(LLMs)在解决CTF挑战方面的潜力时,研究者选用了包括GPT-3.5、GPT-4、Claude、Bard、DeepSeek Coder和Mixtral在内的六种模型。特别地,在涉及人类参与者的研究中,ChatGPT因其卓越的性能而成为最受青睐的选择。研究成果主要体现在三个方面:首先,通过定量和定性分析,评估了这些模型解决26个不同CTF问题的能力,发现ChatGPT的表现与一般人类CTF团队持平;其次,开发并测试了两种基于LLMs的CTF问题解决流程,并报告了它们的成功比率;最后,深入分析了LLMs在应对CTF挑战时的常见局限,强调了在没有人类干预的情况下,单纯依赖LLMs的潜在风险。

方法实现:通过详细地设计实验流程,研究团队对LLMs进行了全面的测试。在HITL流程中,参与者需要根据LLM生成的输出,提供反馈和指导,以帮助模型更准确地解决问题。而在完全自动化的流程中,LLM需要独立完成从理解挑战到生成解决方案的整个过程。

实验

实验设置:选择了GPT-3.5、GPT-4、Claude等六种LLMs进行实验,覆盖了多种CTF问题类型,包括密码学、逆向工程、Web利用等。

实验结果:在解决CTF挑战的过程中,ChatGPT展现出了卓越的性能,能够有效应对多种类型的挑战。相较于人类参与者的平均水平,LLMs在某些情况下能够带来更高的成功率。尽管如此,研究也揭示了LLMs在理解某些特定挑战方面的限制。

论文结论

研究结果表明,LLMs尤其是ChatGPT,能够在无需人类干预的情况下,自动解决CTF挑战,其解题能力与一般水平的人类CTF团队相当。通过对比不同LLMs在解决多种CTF挑战的表现,本研究突显了LLMs在网络安全应用中的潜力,并同时指出了过分依赖LLMs可能带来的局限。

此外,本研究通过深入分析LLMs在处理CTF挑战时的常见不足,例如在复杂逻辑处理和代码生成准确性方面的短板,为未来LLMs在网络安全教育和攻击性能力评估中的应用提供了重要参考。尽管LLMs已证明其在解决CTF挑战方面的潜力,但要实现完全自动化且无需人类干预的水平,仍需对LLMs的训练方法和应用策略进行进一步的优化。

原作者:论文解读智能体

润色:Fancy

校对:小椰风

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/572965.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于随机森林与LSTM神经网络的住宅用电比较分析及预测 代码+论文 完整毕设

摘要 本文旨在探讨基于随机森林(Random Forest)与长短期记忆神经网络(Long Short-Term Memory, LSTM)的住宅用电比较分析及预测方法。随机森林是一种集成学习方法,通过构建多个决策树进行预测,具有较强的鲁…

[XG] HTTP

我希望风起,而你好像更希望风停。 闲来无事,跟着Z3r4y-CSDN博客大神学一学web吧 [NewStarCTF 2023]Begin of HTTP 1.题目要求使用GET方式来给ctf参数传入任意值,那就传吧。 2.又让以POST方式来传递secert参数,并且要找一下参数…

钡铼技术R40工业4G路由器为户外广告牌智能控制系统提供无线网络

钡铼技术R40工业4G路由器在户外广告牌智能控制系统中的应用,为广告行业带来了革命性的变革。作为一种先进的无线通信设备,R40工业4G路由器通过其稳定的信号传输和强大的网络连接能力,为户外广告牌的智能控制系统提供了可靠的无线网络支持&…

【git】git使用手册

目录 一 初始化 1.1 账号配置 1.2 ssh生成 1.2.1 配置ssh 1.2.2 测试SSH 1.3 初始化本地仓库并关联远程仓库 二 使用 2.1 上传 2.2 拉取 三 问题 3.1 关联失败 一 初始化 git的安装很简单,下载后大部分进行下一步完成即可----->地址: git工具下载 1.1 账号配置…

iphoneX系统的参数

1. 2. 3. 4. 5.相关的网址信息 Apple iPhone X 規格、价格和评论 | Kalvo Apple iPhone X 規格、价格和评论 | Kalvo

pyecharts操作二

pyecharts操作二 pyecharts 是一个用于生成Echarts图表的Python库。Echarts是百度开源的一个数据可视化JS库,可以生成一些非常酷炫的图表。 环境安装 pip install pyecharts 检查版本 import pyecharts print(pyecharts.version) 2.0.3 3D柱状图绘制 import p…

计算机票.java

题目:机票价格按照淡季旺季,头等舱和经济舱收费,输入机票原价,月份,头等舱或经济舱 。按照如下规则计算机票价格:旺季(5-10月)头等舱九折,经济舱8.5折,淡季&a…

【Ollama】AI大模型本地部署

Ollama Ollama轻量级、可扩展的框架,用于在本地机器上构建和运行大型语言模型(LLM)。提供了一个简单的API来创建、运行和管理模型,以及一个预构建模型库,可以轻松用于各种应用程序。 明显优势:易于使用、…

【pytest、playwright】allure报告生成视频和图片

目录 1、修改插件pytest_playwright 2、conftest.py配置 3、修改pytest.ini文件 4、运行case 5、注意事项 1、修改插件pytest_playwright pytest_playwright.py内容如下: # Copyright (c) Microsoft Corporation. # # Licensed under the Apache License, Ver…

POJ3037 + HDU-6714

两道最短路好题 POJ3037 手玩一下 发现每一点的速度可以直接搞出来&#xff0c;就是pow(2,h[1][1]-h[i][j])*V 那么从这个点出发到达别的点的耗费的时间都是上面这个数的倒数&#xff0c;然后直接跑最短路就好了 #include<iostream> #include<vector> #include<…

Tensorflow CUPTI could not be loaded 解决

使用conda在指定环境安装cudatoolkit和cudnn后出现 CUPTI could not be loaded问题 conda install cudatoolkit11.0.3 conda install cudnn8.0.5.39 将本机C:\Program Files\NVIDIA Corporation\Nsight Systems xxxx\target-windows-x64 包含cupti的文件均复制到 D:\xxx\cond…

设计模式之装饰模式解析

装饰模式 1&#xff09;概述 1.定义 动态地给一个对象增加一些额外的职责&#xff0c;在增加对象功能时&#xff0c;装饰模式比生成子类实现更为灵活。 2.作用 装饰模式可以在不改变一个对象本身功能的基础上给对象增加额外的新行为。 3.结构图 4.角色 Component&#xf…