协程库-锁类-实现线程互斥同步

mutex.h:信号量,互斥锁,读写锁,范围锁模板,自旋锁,原子锁

**锁不能进行拷贝操作:**锁是用于管理多线程并发访问共享资源的同步原语。这些锁包括互斥锁(mutex)、读写锁(rwlock)等。它们通常不支持拷贝构造和拷贝赋值,这是为了防止在一个线程持有锁的情况下,另一个线程通过拷贝得到相同的锁,从而可能导致死锁或数据不一致的问题。

《Effective C++》 条款 06

想要禁止⼀个类对象的拷⻉操作,就要禁⽌拷⻉构造函数和拷⻉赋值运算符。
解决⽅案2:
定义⼀个基类专⻔阻⽌拷⻉动作,继承该基类的派生类起实例化对象也就无法进行拷⻉操作。

/*** @file noncopyable.h* @brief 不可拷贝对象封装*/
#ifndef __Fzk_NONCOPYABLE_H__
#define __Fzk_NONCOPYABLE_H__
namespace FzkCoroutine {
/*** @brief 对象无法拷贝,赋值*/
class Noncopyable {
public:/*** @brief 默认构造函数*/Noncopyable() = default;/*** @brief 默认析构函数*/~Noncopyable() = default;/*** @brief 拷贝构造函数(禁用)*/Noncopyable(const Noncopyable&) = delete;/*** @brief 赋值函数(禁用)*/Noncopyable& operator=(const Noncopyable&) = delete;
};
}
#endif

基于pthread进一步封装了信号量,互斥锁,读写锁,范围锁模板,自旋锁,原子锁。

局部锁模板:

采用RAII编程风格,RAII的核心思想是利用对象的生命周期来管理资源,确保资源在对象的构造函数中被获取,并在析构函数中被释放。
ScopedLockImpl 及其派生类通过在构造时获取资源(加锁)并在析构时释放资源(解锁)

/*** @brief 局部锁的模板实现*/
template<class T>
struct ScopedLockImpl {
public:/*** @brief 构造函数* @param[in] mutex Mutex*/ScopedLockImpl(T& mutex):m_mutex(mutex) {m_mutex.lock();m_locked = true;}/*** @brief 析构函数,自动释放锁*/~ScopedLockImpl() {unlock();}/*** @brief 加锁*/void lock() {if(!m_locked) {m_mutex.lock();m_locked = true;}}/*** @brief 解锁*/void unlock() {if(m_locked) {m_mutex.unlock();m_locked = false;}}
private:/// mutexT& m_mutex;/// 是否已上锁bool m_locked;
};

类似于C++的lock_guard:

lock_guard通过与互斥锁(mutex)结合使用来实现线程同步。当创建一个lock_guard对象时,获取提供给它的互斥锁的所有权,并自动调用互斥锁的lock()方法来加锁。如果互斥锁已经被其他线程锁定,当前线程将会阻塞,直到互斥锁被解锁。
当lock_guard对象离开作用域时,它的析构函数会被自动调用。在析构函数中,lock_guard会调用互斥锁的unlock()方法来解锁互斥锁。这样可以确保即使在异常情况下,互斥锁也能被正确解锁,避免死锁的发生。
lock_guard特点:
1、创建即加锁,作⽤域结束⾃动析构并解锁,⽆需⼿⼯解锁
2、不能中途解锁,必须等作⽤域结束才解锁
3、不能复制

#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx; // 定义一个互斥锁
int counter = 0; // 共享资源void increment() {for (int i = 0; i < 100000; ++i) {std::lock_guard<std::mutex> lock(mtx); // 加锁++counter; // 访问共享资源}
}
int main() {std::thread t1(increment);std::thread t2(increment);t1.join();t2.join();std::cout << "Counter: " << counter << std::endl;return 0;
}

互斥量Mutex:

/*** @brief 互斥量*/
class Mutex : Noncopyable { //继承不可拷贝数据类
public: /// 局部锁typedef ScopedLockImpl<Mutex> Lock;/*** @brief 构造函数*/Mutex() {pthread_mutex_init(&m_mutex, nullptr);}/*** @brief 析构函数*/~Mutex() {pthread_mutex_destroy(&m_mutex);}/*** @brief 加锁*/void lock() {pthread_mutex_lock(&m_mutex);}/*** @brief 解锁*/void unlock() {pthread_mutex_unlock(&m_mutex);}
private:/// mutexpthread_mutex_t m_mutex;
};

读写互斥量RWMutex:

/*** @brief 读写互斥量*/
class RWMutex : Noncopyable{
public:/// 局部读锁typedef ReadScopedLockImpl<RWMutex> ReadLock;/// 局部写锁typedef WriteScopedLockImpl<RWMutex> WriteLock;/*** @brief 构造函数*/RWMutex() {pthread_rwlock_init(&m_lock, nullptr);}/*** @brief 析构函数*/~RWMutex() {pthread_rwlock_destroy(&m_lock);}/*** @brief 上读锁*/void rdlock() {pthread_rwlock_rdlock(&m_lock);}/*** @brief 上写锁*/void wrlock() {pthread_rwlock_wrlock(&m_lock);}/*** @brief 解锁*/void unlock() {pthread_rwlock_unlock(&m_lock);}
private:/// 读写锁pthread_rwlock_t m_lock;
};

自旋锁

自旋锁是一种同步机制,它不会导致线程进入睡眠状态,而是通过循环不断尝试获取锁资源,可以避免线程切换的开销。但只适用于锁被持有时间短的场景,自旋等待的时间不会太长,而且可以避免线程切换的开销。如果锁被持有时间较长或竞争激烈导致很多线程在自旋等待,那么自旋锁可能会导致CPU资源的浪费,因为线程在等待时会持续占用CPU周期
此外,自旋锁不适合在中断处理中使用,因为中断处理程序应该尽快完成,避免长时间占用CPU。

/*** @brief 自旋锁*/
class Spinlock : Noncopyable {
public:/// 局部锁typedef ScopedLockImpl<Spinlock> Lock;/*** @brief 构造函数*/Spinlock() {pthread_spin_init(&m_mutex, 0);}/*** @brief 析构函数*/~Spinlock() {pthread_spin_destroy(&m_mutex);}/*** @brief 上锁*/void lock() {pthread_spin_lock(&m_mutex);}/*** @brief 解锁*/void unlock() {pthread_spin_unlock(&m_mutex);}
private:/// 自旋锁pthread_spinlock_t m_mutex;
};

原子锁??感觉就是用原子布尔类型实现的自旋锁

CASLock使用C++11中的std::atomic_flag来实现无锁同步,lock()函数使用std::atomic_flag_test_and_set_explicit()函数尝试获取锁,如果获取失败则一直循环等待。unlock()函数使用std::atomic_flag_clear_explicit()函数释放锁。
定义了一个volatile std::atomic_flag类型的成员变量m_mutex,用于表示锁的状态。由于它是volatile类型的,因此编译器不会对其进行优化,保证了其可见性,每次操作都会从内存读取m_mutex的值。

/*** @brief 原子锁*/
class CASLock : Noncopyable {
public:/// 局部锁typedef ScopedLockImpl<CASLock> Lock;/*** @brief 构造函数*/CASLock() {m_mutex.clear();}/*** @brief 析构函数*/~CASLock() {}/*** @brief 上锁*/void lock() {//获取失败则一直循环等待  感觉和自旋锁没区别了while (std::atomic_flag_test_and_set_explicit(&m_mutex, std::memory_order_acquire));}/*** @brief 解锁*/void unlock() {std::atomic_flag_clear_explicit(&m_mutex, std::memory_order_release);}
private:/// 原子状态volatile std::atomic_flag m_mutex;
};CASLock lock;
int shared_data = 0;void thread_func() {for (int i = 0; i < 100000; ++i) {CASLock::Lock l(lock); // 加锁++shared_data; // 访问共享资源}
}int test2() {std::thread t1(thread_func);std::thread t2(thread_func);t1.join();t2.join();std::cout << "shared_data: " << shared_data << std::endl;return 0;
}

测试效果:
1、加原子锁
在这里插入图片描述
2、未加原子锁
在这里插入图片描述
#include 只能将基本数据类型声明为原子变量

#include<iostream>
#include<thread>
#include<windows.h>
#include<atomic>     //新增
#include<vector>
#include<mutex>        
using namespace std;
void Mythread(atomic<int>& num)    //修改
{for (int i = 0; i < 100000; i++){		num++;	}
}
void test03()
{//int num = 0;std::atomic<int> num = 0;int threadNum = 2;     //线程个数vector<std::thread> m_thread;m_thread = vector<std::thread>(threadNum);for (auto i = 0; i < threadNum; i++){m_thread[i] = std::thread(Mythread, &num);}for (auto i = 0; i < threadNum; i++){m_thread[i].join();}cout <<"结果:"<<num << endl;
}
int main()
{test03();system("pause");return 0;
}

小结一下:

互斥量(Mutex):
互斥量是最基本的同步机制之一。它阻止多个线程同时访问共享资源。
当一个线程锁定互斥量时,如果另一个线程尝试锁定同一个互斥量,它将被阻塞(挂起),直到拥有锁的线程释放该锁。
互斥量适用于锁定时间较长的场景,比如复杂操作或涉及I/O的操作。
在 C++ 中,可以使用 头文件中的 std::mutex 类。
自旋锁(Spinlock):
自旋锁在等待锁释放时,线程会在循环检查锁的状态直到获取锁,它不会使线程挂起,而是占用CPU周期等待。
自旋锁适用于锁定时间非常短的场景,因为它避免了线程挂起和恢复的开销(避免线程切换)。
C++11 标准没有直接提供自旋锁,但可以通过原子操作实现,或者使用平台特定的实现(如 POSIX 的 pthread_spinlock,POSIX“可移植操作系统接口”,能够在多种系统之间使用)。
原子锁(Atomic Lock):
原子操作是指不可分割、不会被线程调度机制打断的操作。在执行完毕之前,不会有其他线程对这个操作进行干扰。
C++11 引入了原子操作库 ,提供了一组原子类型,如 std::atomic,可以用来实现低开销的线程安全操作。
原子操作通常用于简单的赋值、递增、递减等操作,而且是无锁的,所以开销比互斥量和自旋锁都要小。
总结:
使用互斥量时,长时间锁定资源会使其他线程挂起,适合复杂操作。
使用自旋锁时,线程会忙等待直到获取锁,适合短时间锁定资源。
使用原子操作时,可以保证单一操作的线程安全,无需锁定,开销最小,但仅限于简单操作(因为只有两种状态)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/572980.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】Faster Neural Networks Straight from JPEG

Faster Neural Networks Straight from JPEG 论文链接&#xff1a;Faster Neural Networks Straight from JPEG (neurips.cc) 作者&#xff1a;Lionel Gueguen&#xff0c;Alex Sergeev&#xff0c;Ben Kadlec&#xff0c;Rosanne Liu&#xff0c;Jason Yosinski 机构&#…

阿里云实时计算Flink的产品化思考与实践【上】

摘要&#xff1a;本文整理自阿里云高级产品专家黄鹏程和阿里云技术专家陈婧敏在 FFA 2023 平台建设专场中的分享。内容主要为以下五部分&#xff1a; 阿里云实时计算 Flink 简介产品化思考产品化实践SQL 产品化思考及实践展望 该主题由黄鹏程和陈婧敏共同完成&#xff0c;前半程…

政安晨:【深度学习神经网络基础】(一)—— 逐本溯源

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 与计算机一样的古老历史 神经网络的出现可追溯到20世纪40年…

STM32启动方式

s在STM32F10xxx里,可以通过BOOT[1:0]引脚选择三种不同启动模式。 启动方式&#xff1a;从内部的Flash中启动、 存储器映射&#xff1a; 0x0000 0000 -----0x0800 0000 映射的内部Flash

SQLite数据库浏览器sqlite-web

什么是 sqlite-web &#xff1f; sqlite-web是一个用 Python 编写的基于 Web 的 SQLite 数据库浏览器。 软件特点&#xff1a; 可与您现有的 SQLite 数据库配合使用&#xff0c;也可用于创建新数据库。添加或删除&#xff1a; 表格列&#xff08;支持旧版本的 SQLite&#xff…

阿里云ECS选型推荐配置

本文介绍构建Kubernetes集群时该如何选择ECS类型以及选型的注意事项。 集群规格规划 目前在创建Kubernetes集群时&#xff0c;存在着使用很多小规格ECS的现象&#xff0c;这样做有以下弊端&#xff1a; 网络问题&#xff1a;小规格Worker ECS的网络资源受限。 容量问题&…

风力发电电网系统的simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1风力发电原理与风机数学模型 4.2 电力电子变换器模型 4.3并网控制策略 5.完整工程文件 1.课题概述 风力发电电网系统的simulink建模与仿真。 2.系统仿真结果 3.核心程序与模型 版本&#xff1a;…

快速上手Spring Cloud 十一:微服务架构下的安全与权限管理

快速上手Spring Cloud 一&#xff1a;Spring Cloud 简介 快速上手Spring Cloud 二&#xff1a;核心组件解析 快速上手Spring Cloud 三&#xff1a;API网关深入探索与实战应用 快速上手Spring Cloud 四&#xff1a;微服务治理与安全 快速上手Spring Cloud 五&#xff1a;Spring …

每日一题--- 环形链表[力扣][Go]

环形链表 题目&#xff1a;142. 环形链表 II 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给…

elasticsearch基础应用

1._cat接口 | _cat接口 | 说明 | | GET /_cat/nodes | 查看所有节点 | | GET /_cat/health | 查看ES健康状况 | | GET /_cat/master | 查看主节点 | | GET /_cat/indices | 查看所有索引信息 | es 中会默认提供上面的几个索引&#xff0c;表头…

MOV压敏电阻的微观结构与制造工艺

EAK 压敏电阻 应用于电力系统的MOV目前主要有两大系列&#xff0c;它们都是以ZnO为主要成分再加人少量其他金属氧化物添加剂而构成的。添加剂为Bi,O:、Sb,O:、MnO₂和CoO,等构成的 MOV称为Bi系列:添加剂为Pr,0、Co,0、Mg0而不含B,0,或含量极少的MOV称为Pr系列(或称稀土系列)。添…

基于Java实现宠物领养救助交流平台设计和实现

基于Java实现宠物领养救助交流平台设计和实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获取源码联…