基于YOLOv7开发构建MSTAR雷达影像目标检测系统

MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集是一个基于合成孔径雷达(Synthetic Aperture Radar,SAR)图像的目标检测和识别数据集。它是针对目标检测、机器学习和模式识别算法的研究和评估而设计的。

MSTAR数据集由美国海军研究实验室(Naval Research Laboratory,NRL)创建,该数据集包含了多种类型和方位的车辆和目标的高分辨率合成孔径雷达图像。它提供了复杂的场景和多种目标类型,包括各种车辆和地面目标,如坦克、卡车、自行车等。

MSTAR数据集的特点如下:

  1. 分辨率高:MSTAR数据集的SAR图像具有高分辨率,能够提供细节丰富的目标信息,有助于进行精确的目标检测和识别。

  2. 方位变化:该数据集提供了目标在不同方位角下的合成孔径雷达图像,包括前视、靠近侧视、背视等多种视角,用于研究方位变化对目标识别的影响。

  3. 多样性目标:MSTAR数据集中包含了多种类型的目标,涵盖了各种车辆和地面目标,使得研究和评估的算法可以具有更好的泛化性能。

MSTAR数据集对于合成孔径雷达图像的目标检测和识别算法的研究和评估提供了有力的工具。它可以用于训练和测试基于机器学习和深度学习的目标检测模型,提高合成孔径雷达图像分析的准确性和鲁棒性。

在前面的博文中我已经基于MSTAR的数据集开发构建了目标检测系统,感兴趣的话可以自行移步阅读即可:

《基于yolov5n的轻量级MSTAR遥感影像目标检测系统设计开发实战》

之前是使用的yolov5模型去开发实现的,且使用的是最为轻量级的模型,这里考虑基于yolov7来开发构建MSTAR雷达影像目标检测识别系统,简单看下实例效果图:

 接下来看下数据集情况:

 共有2.4w+的数据。

本文使用到的YOLOv7模型配置文件如下所示:

# parameters
nc: 10  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [32, 3, 1]],  # 0[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      [-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],  # 11[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 16-P3/8  [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],  # 24[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 29-P4/16  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 37[-1, 1, MP, []],[-1, 1, Conv, [512, 1, 1]],[-3, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 42-P5/32  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [1024, 1, 1]],  # 50]# yolov7 head
head:[[-1, 1, SPPCSPC, [512]], # 51[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[37, 1, Conv, [256, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 63[-1, 1, Conv, [128, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[24, 1, Conv, [128, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]], # 75[-1, 1, MP, []],[-1, 1, Conv, [128, 1, 1]],[-3, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 2]],[[-1, -3, 63], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]], # 88[-1, 1, MP, []],[-1, 1, Conv, [256, 1, 1]],[-3, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 2]],[[-1, -3, 51], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]], # 101[75, 1, RepConv, [256, 3, 1]],[88, 1, RepConv, [512, 3, 1]],[101, 1, RepConv, [1024, 3, 1]],[[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

训练数据配置文件如下所示:

# path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 10# class names
names: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

终端执行下面的命令即可启动训练:

python train.py --cfg cfg/training/yolov7.yaml --weights weights/yolov7_training.pt --name yolov7 --epochs 100 --batch-size 32 --img 640 640 --device 0 --data data/self.yaml

默认100次epoch的迭代计算,终端日志输出如下所示:

 训练完成后来看下结果详情:

【精确率曲线】

精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

 【召回率曲线】

召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

 【PR曲线】

精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【F1值曲线】

F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

 【混淆矩阵】

 【训练过程可视化】

 可以看到整体的训练过程还是相对平稳的。

【batch计算实例】如下所示:

 可视化推理实例这块,主要开发实现了:图像检测和视频检测两种类型数据的推理计算,如下图所示:

【图像检测】

 【视频检测】

 整体检测的效果很不错,后面有时间考虑基于其他类型的检测模型开发尝试一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/57508.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EP4CE6E22C8 FPGA最小系统电路原理图+PCB源文件

资料下载地址:EP4CE6E22C8 FPGA最小系统电路原理图PCB源文件 一、原理图 二、PCB

linux Ubuntu 更新镜像源、安装sudo、nvtop、tmux

1.更换镜像源 vi ~/.pip/pip.conf在打开的文件中输入: pip.conf [global] index-url https://pypi.tuna.tsinghua.edu.cn/simple按下:wq保存并退出。 2.安装nvtop 如果输入指令apt install nvtop报错: E: Unable to locate package nvtop 需要更新一下apt&a…

Windows环境下Node.js二进制版安装教程

文章目录 前言一 下载Node.js二 设置环境变量三 配置全局安装和缓存路径四 设置仓库 前言 新版的Node.js已自带npm,就在Node.js下载完成解压后的文件内,的node_modules包中。 npm的作用:是对Node.js依赖的包进行管理,类似maven。…

云运维工具

企业通常寻找具有成本效益的方法来优化创收,维护物理基础架构以托管服务器和应用程序以提供服务交付需要巨大的空间和前期资金,最重要的是,物理基础设施会产生额外的运营支出以进行定期维护,这对收入造成了沉重的损失。 云使企业…

vue+iviewUi+oss直传阿里云上传文件

前端实现文件上传到oss(阿里云)适用于vue、react、uni-app,获取视频第一帧图片 用户获取oss配置信息将文件上传到阿里云,保证了安全性和减轻服务器负担。一般文件资源很多直接上传到服务器会加重服务器负担此时可以选择上传到oss&…

Leetcode31 下一个排列

解题思路: 算法过程的第二步,可以变为将[j,end]排序,然后从[j,end)和i进行比较,在区间j,end区间第一个大于nums[i]后,交换即可 public void nextPermutation(int[] nums) {int len nums.length - 1;for(int i len;i…

vue-baidu-map-3x 使用记录

在 Vue3 TypeScript 项目中,为了采用 标签组件 的方式,使用百度地图组件,冲浪发现了一个开源库 ovo,很方便!喜欢的朋友记得帮 原作者 点下 star ~ vue-baidu-map-3xbaidu-map的vue3/vue2版本(支持v2.0、v…

获取k8s scale资源对象的命令

kubectl get --raw /apis/<apiGroup>/<apiVersion>/namespaces/<namespaceName>/<resourceKind>/<resourceName>/scale 说明&#xff1a;scale资源对象用来水平扩展k8s资源对象的副本数&#xff0c;它是作为一种k8s资源对象的子资源存在&#xf…

IAR开发环境的安装、配置和新建STM32工程模板

IAR到环境配置到新建工程模板-以STM32为例 一、 简单介绍一下IAR软件1. IAR的安装&#xff08;1&#xff09; 下载IAR集成开发环境安装文件&#xff08;2&#xff09; 安装 2. 软件注册授权 二、IAR上手使用(基于STM32标准库新建工程)1、下载标准库文件2、在IAR新建工程&#x…

Vue缓存字典值减少网络请求次数,解决同样参数并发请求多次

前言 在一些项目里&#xff0c;我们可能有着大量的下拉框&#xff0c;而这些下拉框的数据就来源于我们后端接口返回的字典信息。于是&#xff0c;画风可能是这样的&#xff0c;每次下拉&#xff0c;你都需要请求一次字典接口拿到这些数据&#xff0c;于是每次组件刷新都会重复…

【抽水蓄能电站】基于粒子群优化算法的抽水蓄能电站的最佳调度方案研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码、数据、文章讲解 &#x1f4a5;1 概述 文献来源&#xff1a; 摘要&#xff1a;抽水蓄能电站作为当前电力系统重要的储能和调峰电源同时具有填谷、调频、调相、事故备用以…

鉴源论坛·观擎丨浅谈操作系统的适航符合性(上)

作者 | 蔡喁 上海控安可信软件创新研究院副院长 版块 | 鉴源论坛 观擎 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 01 源头和现状​​​​​​​ 在越来越多的国产机载系统研制中&#xff0c;操作系统软件的选择对后续开展研制以及适航举证活动带来…