2014年认证杯SPSSPRO杯数学建模B题(第二阶段)位图的处理算法全过程文档及程序

2014年认证杯SPSSPRO杯数学建模

B题 位图的处理算法

原题再现:

  图形(或图像)在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。矢量图可以任意放缩,图形不会有任何改变。而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。
  第二阶段问题: 位图在放大时,图像质量常会有所下降,如容易产生较为明显的模糊或马赛克等现象(见图2)。请你建立合理的数学模型,来设计一个放大位图的算法,使图像在被放大后仍能尽量保持较好的图像质量。
在这里插入图片描述
在这里插入图片描述

整体求解过程概述(摘要)

  本文针对位图的放大问题,以题中所给的位图为切入点,综合分析了位图各像素点的坐标及其对应的RGB分量,并通过文献的查阅,基于插值图像边缘部分的分辨率对整个图像放大的重要影响,确立了对边缘部分与非边缘部分采取不同插值算法的建模思路,建立了基于Sobel算子改进后的彩色图像边缘检测模、Thiele - Newton插值法图像边缘部分放大模型、图像放大的分片连续模型和图像“质检—去噪—后处理”模型,运用Matlab软件,C++对图像数据进行处理、分析。最后,对整个模型存在的不足与优点进行讨论,提出对原模型的改进和推广。
  针对问题一,首先,使用改进后的适用于彩色图像的Sobel算法对原图像,借助C++程序对图像进行边缘检测,得到边缘像素点及其RGB值。然后,对边缘像素点进行精密的Thiele - Newton二元有理插值,实现边缘区域的放大算法。
  针对问题二,通过对非边缘图像划分区域段,建立段内连续函数,连续段间的延拓将其分为分片连续的曲面。然后,将整个非边缘曲面表示为了二元的分片连续函数,通过像素RGB分量在新坐标系中的映射关系实现非边缘区域的放大算法。
  针对问题三,首先,问题一与问题二中模型所产生两部分区域放大的组合已初步实现了整个图像的高保真放大,但基于对图像清晰度及背景平滑性的考虑,需要对放大后的图像进行进一步处理。使用彩色图像矢量中通滤波进行去噪处理,并利用反锐化掩模法对插值图像的细节进行进一步增强。本文还对模型的误差进行了具体分析;对模型的优化提出了针对性的改进,分析了模型存在优势与不足。最后,我们又对模型进行了多个方向的推广,分析了其在三维图像放大处理与二维图像缩小处理上的应用前景。

问题分析:

  问题一:对彩色图像进行边缘区域检测并对其进行边缘插值。
将问题一拆分为两个部分:第一,改进Sobel算子,对目标彩色图像边缘区域进行检测;第二,对边缘区域像素点进行插值。首先,运用数学软件Matlab对检测目标图像的边缘区域,得到轮廓像素点的坐标及其对应的RGB分量。考虑到Sobel算子对灰度图像边缘检测效果较好,但是对彩色图像边缘检测会出现边缘模糊的现象,影响后续图像处理。因此,根据彩色图像特点,通过计算RGB分量梯度值,改进Sobel边缘检测方法,提升边缘检测效果。其次,在图像边缘区域采取自适应插值算法,运用较小的运算价,以便能够得到更好的放大效果。

  问题二:对图像进行分片处理,确定局部连续区域(非边缘区域)分片为曲面,并对曲面进行插值。经过模型Ⅰ和模型Ⅱ对图像边缘像的检测提取并进行插值放大处理后,我们需要对大量的非边缘图像部分进行放大处理。使用较为普遍的算法如最近邻域法,双线性内插法,三次内插法等方法虽然能够快速生成较为视觉效果较为良好的目的图像,但仍然存在图像中物体边界区域模糊的问题,限制了其在实际生活场合以及专业图像处理场合的应用。基于此,我们采用一种图像的分片连续数学模型,先将图像分片为连续的曲面,再对曲面进行插值,将原始图像用二元分片连续函数表示,进而对非边缘部分进行放大处理。

  问题三:对目标图像进行放大后的质量提升处理。经过对目标图像两部分有针对性地进行不同的插值放大算法后,我们得到了目标图像初步放大后的结果。但为了保证放大后图像的视觉质量,我们需要对放大后的图像进行如下操作:
在这里插入图片描述

模型假设:

  1.假设目标图像水平清晰度较高,图像质量较高。
  2.假设目标图像尺寸较小,像素点数量有限,可以进一步进行图像放大。
  3.假设目标图像可能被噪声污染,存在一定噪点,需要进行去噪处理。
  4.假设对目标图像的像素点进行插值得到的曲线或平面具有一定的光滑性。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
int _tmain(int argc, _TCHAR* argv[])
{
// TODO: Add your command handler code here
//定义的变量
IplImage* pImage= NULL; // 声明 IplImage 变量
IplImage* pImgSobelgray= NULL;// 声明 IplImage 变量,用于灰度图像 Sobel 变换
IplImage* pImg8u= NULL;// 声明 IplImage 变量,用于图像格式转换
IplImage* pImg8uSmooth= NULL;// 声明 IplImage 变量,用于存储平滑后的图像
IplImage* pImgColor= NULL;// 声明 IplImage 变量,用于 Sobel 变换IplImage* pImgSobelcolor= NULL;// 声明 IplImage 变量,用于彩色图像 Sobel 变换
IplImage* pImgPlanes[3] = { 0, 0, 0 };
IplImage* pImage = cvLoadImage ( "barbara.png", CV_LOAD_IMAGE_GRAYSCALE );
cvNamedWindow ( "Original Image " , 1 );
cvShowImage ( " Original Image " , img );
//将已读入系统的图像复制一份
//pImage=cvCloneImage( img );
//建立和原始图像一样图像内存区,图像元素的位深度设为 IPL_DEPTH_8U 
//即无符号 8 位整型
pImg8u = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
pImg8uSmooth = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
//对灰度图像进行 Sobel 变换
//将彩色图像转换为灰度图像
cvCvtColor(pImage, pImg8u, CV_BGR2GRAY);
//对图像进行高斯滤波
cvSmooth( pImg8u, pImg8uSmooth,CV_GAUSSIAN,3,0,0);
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
//因为 cvSobel 函数要求目标图像必须是 16-bit 图像
pImgSobelgray = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_16S, 1);
//计算一阶 x 方向的图像差分,可根据需要设置参数
cvSobel(pImg8uSmooth, pImgSobelgray,0,1,3);
//将图像格式再转换回来,用于显示cvConvertScaleAbs(pImgSobelgray,pImg8u,1,0 ) ;
//创建窗口,显示图像
cvvNamedWindow( "Sobel gray Image", 1 ); cvvShowImage( "Sobel gray Image", pImg8u ); 
//对彩色图像进行 Sobel 变换
//建立 3 个图像内存区,分别存储图像 3 个通道,图像元素的位深度设为 IPL_DEPTH_8U
int i;
for( i = 0; i < 3; i++ )
pImgPlanes[i] = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 1 );
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
pImgSobelcolor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 
IPL_DEPTH_16S, 1 );
//要求输出图像是 16 位有符号的
pImgColor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 3 );
//将彩色图像分成 3 个单通道图像
cvCvtPixToPlane(pImage, pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0 );
for( i = 0; i < 3; i++ )
{
//分别对每通道图像进行 Sobel 变换
cvSobel( pImgPlanes[i], pImgSobelcolor,0,1,3 );
//转化为 8 位的图像
cvConvertScaleAbs(pImgSobelcolor, pImgPlanes[i], 1, 0 ); 
}
//将各通道图像进行合并
cvCvtPlaneToPix( pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0, pImgColor);
//创建窗口,显示图像
cvvNamedWindow( "Sobel color Image", 1 ); 
cvvShowImage( "Sobel color Image", pImgColor); 
//等待按键
cvWaitKey(0); 
//销毁窗口
cvDestroyWindow( " Sobel gray Image " );
cvDestroyWindow( " Sobel color Image " );
//将程序开始定义的变量释放
cvReleaseImage( & pImage);
cvReleaseImage( & pImgSobelgray);
cvReleaseImage( & pImgSobelcolor);
cvReleaseImage( & pImg8u);
cvReleaseImage( & pImg8uSmooth);
return 0;
}
I=imread('写入图片存放的位置,后缀.图像格式');
I1=rgb2gray(I);
I2=medfilt2(I1,[m,n]);
%%%I2 就是中值滤波后的图像,medfilt2 是 matlab 中中值滤波函数,直接调用即可,m 和 n
是选取的平滑窗口,一般为 3*3,可以进行调整
要分离的话,可以这样做:
M=imread('D:\ebook\lena.bmp'); %读取 MATLAB 中的名为 cameraman 的图像
subplot(2,2,1)
imshow(M) %显示原始图像
title('original')
P1=imnoise(M,'gaussian',0.02); %加入高斯躁声
subplot(2,2,2)
imshow(P1) %加入高斯躁声后显示图像
title('gaussian noise');
g1=medfilt2(P1(:,:,1));%%红
g2=medfilt2(P1(:,:,2));%%绿
g3=medfilt2(P1(:,:,3));%%蓝
g(:,:,1)=g1;
g(:,:,2)=g2;
g(:,:,3)=g3;
subplot(2,2,3)
imshow(g)
title('medfilter gaussian')
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/576388.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

|行业洞察·有色金属|《2000年以来各国黄金储备分析:金砖国家增持一有望持续助推金价中枢抬升》

报告内容的详细解读&#xff1a; 1. 全球央行黄金储备趋势 2011年以来&#xff0c;全球央行持续增加黄金储备&#xff0c;年均增持超过1000吨&#xff0c;成为黄金需求的重要一极。截至2023年&#xff0c;央行黄金储备占比不足5%的国家数量占比达到45%&#xff0c;而美国、德…

AI面试工具:为你的招聘需求选择正确的解决方案

如果你是一名招聘经理&#xff0c;那么考虑到市场上有多种AI面试工具&#xff0c;你完全有理由感到困惑。在这种情况下&#xff0c;人们通常会选择谷歌上排名靠前的单向视频面试工具&#xff0c;这都要归功于SEO。但我们不希望你随波逐流&#xff0c;在投资了数万元的招聘工具后…

day56 动态规划part13

300. 最长递增子序列 中等 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,…

云原生架构(微服务、容器云、DevOps、不可变基础设施、声明式API、Serverless、Service Mesh)

前言 读完本文&#xff0c;你将对云原生下的核心概念微服务、容器云、DevOps、Immutable Infrastructure、Declarative-API、Serverless、Service Mesh 等有一个相对详细的了解&#xff0c;帮助你快速掌握云原生的核心和要点。 因题主资源有限, 这里会选用部分云服务商的组件进…

vant checkbox 复选框 样式改写

修改前 修改后 基于 vant&#xff1a; 4.8.3 unocss: 0.53.4 <van-checkbox-group v-model"query.zczb" shape"square" class"text-16 w-100% flex flex-wrap"><template v-for"item in registerCapitalOption"><v…

git配置SSH 密钥

git配置SSH 密钥 1.window配置ssh1.安装ssh2.安装 Git&#xff08;安装教程参见安装Git&#xff09;并保证版本大于 1.9![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/e59f4e16b83c45649f1d9d7bd6bf92c0.png)3.SSH 尽量保持最新&#xff0c;6.5之前的版本由于使用…

12.路由安装

路由安装 安装vscode https://code.visualstudio.com/ 使用vscode打开后台系统项目 在终端运行npm run dev即可运行项目 src/assets中存放静态资源 src/components中存放组件 app.vue是主界面&#xff08;入口页面&#xff09; 注释main.ts中的import ./style.css package.j…

经纬恒润AUTOSAR产品成功适配芯来RISC-V车规内核

近日&#xff0c;经纬恒润AUTOSAR基础软件产品INTEWORK-EAS&#xff08;ECU AUTOSAR Software&#xff0c;以下简称EAS&#xff09;在芯来提供的HP060开发板上成功适配芯来科技的RISC-V处理器NA内核&#xff0c;双方携手打造了具备灵活、可靠、高性能、强安全性的解决方案。这极…

工业智能网关如何与设备连接?-天拓四方

随着工业4.0时代的来临&#xff0c;智能化、自动化已成为工业生产的标配。在这样的背景下&#xff0c;工业智能网关应运而生&#xff0c;成为连接工业设备、实现数据交互与管理的关键节点。本文将阐述工业智能网关如何与设备连接&#xff0c;旨在为读者提供一套清晰、实用的解决…

YOLOv9 实现多目标跟踪

YOLOv9项目结合了YOLOv9的快速目标检测能力和DeepSORT的稳定跟踪能力&#xff0c;实现了对视频流中多个对象的实时、准确检测和跟踪。在具体应用中&#xff0c;该项目能够对视频中的行人、车辆或其他物体进行实时定位、识别和持续跟踪&#xff0c;即使在复杂环境、对象互相遮挡…

ES学习日记(三)-------第三方插件选择

前言 在学习和使用Elasticsearch的过程中&#xff0c;必不可少需要通过一些工具查看es的运行状态以及数据。如果都是通过rest请求&#xff0c;未免太过麻烦&#xff0c;而且也不够人性化。 目前我了解的比较主流的插件就三个,head,cerebor和elasticHD 1.head 老牌插件,功能…

fastadmin学习05-开启debug以及配置

FastAdmin 框架提供了对 .env 环境变量配置的支持&#xff0c;并附带一个默认示例文件 .env.sample。在安装后&#xff0c;框架并不会自动启用 env 环境变量&#xff0c;需要手动将 .env.sample 复制为 .env 并进行配置。 如果不开启.env会读取database.php中的配置 下面测试…