大模型预测,下一个token何必是文字?

太快了太快了…

大模型的生成技能,已经到了普通人看不懂的境界!

它可以根据用户过去5年的体检报告,生成未来第1年、第2年、第3年的体检报告。

你看,这个生成的过程,是不是像极了ChatGPT,根据历史单词预测下一个单词。

图片

它能查看过去7天机组子部件的运行情况,生成未来3天每小时的子部件报告 。

图片

还能基于历史水文数据和未来7天气象数据,生成未来第1天、第2天……至第7天的每小时降水分析报告,包括详细降水量、降水分布。

图片

如今,大模型的生成内容,早已不只是文字/图像/视频了

如上生成的这些报告分析涉及诸多专业知识,普通人很难基于自己的知识储备评价其合理性和正确性。

最多只能评价一句:不明觉厉!

怎么说呢?“AI似乎正在生成一切”。

LLM+行业数据,路走错了?

简单理解大模型,就是Predict the Next “X”。ChatGPT是Predict the Next “Word”。

但行业需要的往往不是预测下一个字。

比如对于慢性病患者的健康管理规划,它需要基于一系列生理指标数据,从医学角度进行数据预测。举个不恰当的例子,这更像是用数学方法解题。

如果在大语言模型基础上投喂大量专业的医学语料,更像是用语文方法读题。尽管能理解相关的术语和指标,可是给出的预测结果大概率不准确。因为问题本身超出了“语言”范畴,不能用语文方法求解

如果“X“的模态从“文字Word”变成了“体检报告”,模型则可以根据历史体检报告数据去预测下一个体检报告,这才是一个健康管理大模型。

图片

它的逻辑更像是“种瓜得瓜、种豆得豆”。即输入“X”、输出“X”。

这里的“X”可能包含水文数据、健康报告、设备监测数值、设计推演等不同样式的专业数据。

它能基于音乐厅的几何模型和房间数据,从声源发射5000Hz频率射线,生成射线分布图,找到听觉最佳的音源摆放位置。

图片

如何预测“X”?

所以,这些能预测下一个X的行业大模型,如何构建出来?

通过刚刚发布的先知AIOS 5.0。其核心特点是基于各行各业场景的X模态数据,构建行业基座大模型。

解决了当前行业大模型只能将行业文本数据喂给大语言模型、生成下一个字的问题,让大模型能来到的领域更加广泛。

图片

先知是AI公司第四范式的核心产品。2015年,先知AIOS 1.0版本首次发布,通过高维、实时、自学习框架提升模型精度;2017年,先知AIOS 2.0版本利用自动建模工具HyperCycle,降低模型开发门槛;2020年发布的先知AIOS 3.0版本规范AI数据治理和上线投产;2022年,先知AIOS 4.0版本引入北极星指标,更大化发挥AI应用价值。

AIOS 5.0版本则从生成式AI+行业这一角度出发,给行业大模型提出了一种新思路。

而在公认的大模型应用落地元年里,行业大模型的发展和影响一定是此前的数倍。这种更具规模化的动向,由此也形成了AIGC趋势的下一个范式。

One More Thing:AIGC迈向新范式?

从图片、文字、视频,再到健康、水利……我们不难看出AIGC现在正以迅猛的速度朝着AI生成一切的方向飞奔。

通常来说,一切事物的发展似乎都需要一些范式来推动,而且不是新范式取代旧范式,而是它们之间互补使其更加深入和全面。

正如科学研究中的四种范式一般,即实验归纳、理论推演、计算机仿真和数据密集型科学发现,它们相互补充,共同推动了科学研究的进步。

那么若是以这种逻辑来看待AIGC,似乎类似的四种范式也已经开始出现。

AIGC的第一范式以文本生成为核心,通过智能客服、内容续写等应用,展示了AI在理解和生成自然语言方面的能力。这一阶段的AIGC技术,为后续的发展奠定了基础,使得机器能够与人类进行有效的交流和互动。

AIGC的第二范式将应用领域扩展到了图像生成

如生成对抗网络(GAN)、变分自编码器(VAE)等,可以学习从随机噪声生成逼真图像的映射。并能将输出结果用于艺术创作、图像增强、虚拟场景生成等领域。这一范式进一步展现了AI的想象力。

AIGC的第三范式则是聚焦在了视频生成,例如Gen2,例如Sora。

视频生成一定程度上反映了AI对于世界的理解。从Sora诞生以来,能否理解世界?是否是世界模拟器的说法一直争论不休。因为如果确定Sora可以理解世界,将意味着AGI大门正式开启。

图片

而AIGC的第四范式,就是以行业为主,技术将全面渗透到各个行业之中。

这一阶段的核心任务是将AI技术与行业知识深度融合。今年作为大模型应用落地的元年,我们看到AIGC技术开始在医疗、教育、金融等关键领域发挥重要作用。

具体怎么做才能更快推进AIGC扎入行业?各路玩家都还在不断尝试中。以大语言模型为底座?还是直接训练行业大模型?不同路线都有各自的底层逻辑,谁的路线更能跑通,还言之过早。

但可以确定的是——

在AI生成一切的进程中,那些能够率先利用AI技术的个人和行业,将能够更早地享受到技术带来的红利。他们将有机会引领行业变革,塑造未来的社会和经济格局。

而且也只有AIGC进入到了第四范式,才意味着完成了技术创新到商业创业的飞轮转换,意味着生成式AI开启新质生产力变革

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/577736.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JUC并发编程之常用方法

sleep() public void testSleepAndYield() {Thread t1 new Thread(() -> {try {log.debug("t1-sleep...");Thread.sleep(2000);} catch (InterruptedException e) {throw new RuntimeException(e);}}, "t1");log.debug("t1 start 前的状态&#…

机器学习 - 手动实现 ReLU 和 Sigmoid

直接上代码 import torch import matplotlib.pyplot as pltA torch.arange(-10, 10, 1, dtypetorch.float(32)) def relu(x):return torch.maximum(torch.tensor(0), x) plt.plot(relu(A))结果如下: import torch import matplotlib.pyplot as pltA torch.aran…

比 Python 快 9 万倍的 Mojo 终于开源了!

2024 年 3 月 29 日,Modular Inc. 宣布开源 Mojo 的核心组件。 Mojo 是一种专为编写人工智能软件设计的编程语言,去年 8 月份正式发布,迄今为止已经积累了超过 17.5 万名开发者和 5 万个组织。 人工智能模型通常使用多种编程语言编写。开发…

基于JSP的母婴用品网站

背景 随着时代的飞速进步,计算机技术已经广泛而深刻地渗透到社会的各个层面。人们生活质量的持续提升,以及对母婴产品需求的日益增长,都推动了母婴用品网站开发的必要性和紧迫性。这类网站依托计算机技术,通过对相关产品信息的有…

GRE_MGRE综合实验

目录 1、R5为ISP,只能进行IP地址配置,其所有地址均配为公有IP地址。 IP配置 配置公网全网通 2、(1)R1和R5间使用PPP的PAP认证,R5为主认证方。 PAP认证 (2)R2与R5之间使用ppp的CHAP认证&am…

html安装及入门

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、简单介绍一下前端三大件开发工具 二、安装VSCode三、VSCode相关配置1.汉化2.live server3.使用前 总结 提示:以下是本篇文章正文内容,下…

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

代码随想录算法训练营第三十八天 | 509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 509. 斐波那契数题目解法 70. 爬楼梯题目解法 746. 使用最小花费爬楼梯题目解法 感悟 509. 斐波那契数 题目 解法 使用动态规划 class Solution { public:int fib(int n) {if(n <…

文本文件操作

大家好&#xff1a; 衷心希望各位点赞。 您的问题请留在评论区&#xff0c;我会及时回答。 文件操作 程序运行时&#xff0c;产生的数据都是临时数据&#xff0c;程序一旦运行结束都会被释放。通过文件可以将数据持久化。 C中对文件进行操作需要包含头文件<fstream> 文件…

【scala】使用gradle和scala构建springboot程序

零、版本说明: springboot: 2.7.18 使用log4j2&#xff0c;不使用springboot自带的logback scala版本&#xff1a;2.11 jackson版本&#xff1a;2.16.0 一、依赖&#xff1a; buildscript {dependencies {// using spring-boot-maven-plugin as package toolclasspath("…

halcon例程学习——ball.hdev

dev_update_window (off) dev_close_window () dev_open_window (0, 0, 728, 512, black, WindowID) read_image (Bond, die/die_03) dev_display (Bond) set_display_font (WindowID, 14, mono, true, false) *自带的 提示继续 disp_continue_message (WindowID, black, true)…

【深耕 Python】Data Science with Python 数据科学(2)jupyter-lab和numpy数组

关于数据科学环境的建立&#xff0c;可以参考我的博客&#xff1a;【深耕 Python】Data Science with Python 数据科学&#xff08;1&#xff09;环境搭建 Jupyter代码片段1&#xff1a;简单数组的定义和排序 import numpy as np np.array([1, 2, 3]) a np.array([9, 6, 2, …

剑指Offer题目笔记22(快速排序)

快速排序定义&#xff1a; ​ 快速排序的基本思想是分治法&#xff0c;排序过程如下&#xff1a;在输入数组中随机选取一个元素作为中间值&#xff08;pivot&#xff09;&#xff0c;然后对数组进行分区&#xff08;partition&#xff09;&#xff0c;使所有比中间值小的数据移…