aeon,一个好用的 Python 库!

83bd818f9b9a026ea7e97c723dcaec1c.png

更多Python学习内容:ipengtao.com

大家好,今天为大家分享一个好用的 Python 库 - aeon

Github地址:https://github.com/aeon-toolkit/aeon


在现代计算机科学和人工智能领域,处理时间序列数据是一个重要而复杂的任务。Python aeon库应运而生,它为开发者提供了强大的工具和方法来处理时间序列数据,从而在数据分析、机器学习和预测等方面发挥重要作用。本文将深入探讨aeon库的特性、安装方法、基本功能、高级功能、实际应用场景以及总结,带领读者进入异世界般的时间序列数据处理领域。

安装

安装aeon库可以使用pip命令:

pip install aeon

安装完成后,就可以开始使用aeon库了。

特性

  • 提供了多种时间序列数据处理方法,如时间序列重采样、滑动窗口处理、时序预测等。

  • 支持多种常见时间序列数据格式,如CSV、JSON、Pandas DataFrame等。

  • 具有高效且灵活的时间序列数据处理和操作接口。

基本功能

1. 时间序列重采样

时间序列重采样是时间序列数据处理中常用的方法之一,aeon库提供了灵活的重采样功能,示例代码如下:

import aeon
import pandas as pd# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', end='2022-01-10', freq='D'), 'value': [10, 20, 15, 30, 25, 35, 40, 45, 50, 55]}
df = pd.DataFrame(data)# 对时间序列数据进行按月重采样
resampled_df = aeon.resample(df, rule='M', on='date')
print(resampled_df)

2. 滑动窗口处理

在时间序列数据分析中,滑动窗口处理是一种常见的技术,可以用来计算滑动窗口内的统计指标或进行滑动窗口预测,示例代码如下:

import aeon
import pandas as pd# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', periods=10, freq='D'), 'value': [10, 20, 15, 30, 25, 35, 40, 45, 50, 55]}
df = pd.DataFrame(data)# 使用滑动窗口计算均值
window_size = 3
df['rolling_mean'] = aeon.rolling_mean(df['value'], window=window_size)
print(df)

高级功能

1. 时序预测

aeon库提供了强大的时序预测功能,可以使用多种机器学习模型进行时序数据的预测和分析,示例代码如下:

import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 创建一个示例时间序列数据
data = {'date': pd.date_range(start='2022-01-01', periods=100, freq='D'), 'value': [i**2 for i in range(100)]}
df = pd.DataFrame(data)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['value'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

实际应用场景

aeon库在实际应用中有着广泛的应用场景,包括但不限于以下几个方面:

1. 股票价格预测

在金融领域,股票价格预测是一个重要的问题。可以利用aeon库中的时序预测功能,结合机器学习模型,对股票价格进行预测和分析。

示例代码:
import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载股票价格数据集
df = pd.read_csv('stock_prices.csv')# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['price'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

2. 交通流量预测

在城市交通管理中,预测交通流量对于优化交通流畅度和减少拥堵具有重要意义。aeon库的时序预测功能可以用于交通流量数据的预测和分析。

示例代码:
import aeon
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 加载交通流量数据集
df = pd.read_csv('traffic_volume.csv')# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df.index, df['volume'], test_size=0.2, random_state=42)# 使用随机森林回归模型进行时序预测
model = RandomForestRegressor()
model.fit(X_train.values.reshape(-1, 1), y_train)
y_pred = model.predict(X_test.values.reshape(-1, 1))# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("均方误差:", mse)

总结

通过本文对Python aeon库的介绍和示例代码演示,了解了该库在时间序列数据处理方面的强大功能和应用场景。aeon库不仅提供了丰富的时间序列处理方法,还支持多种常见数据格式和机器学习模型,适用于多个领域的数据分析和预测任务。希望本文能帮助大家更好地理解和应用Python aeon库。

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!


如果想要系统学习Python、Python问题咨询,或者考虑做一些工作以外的副业,都可以扫描二维码添加微信,围观朋友圈一起交流学习。

522fd8eeb5b5659223cde0470d351b02.gif

我们还为大家准备了Python资料和副业项目合集,感兴趣的小伙伴快来找我领取一起交流学习哦!

0e8b96ef6c3cb95421e2adb07d84d644.jpeg

往期推荐

历时一个月整理的 Python 爬虫学习手册全集PDF(免费开放下载)

Python基础学习常见的100个问题.pdf(附答案)

学习 数据结构与算法,这是我见过最友好的教程!(PDF免费下载)

Python办公自动化完全指南(免费PDF)

Python Web 开发常见的100个问题.PDF

肝了一周,整理了Python 从0到1学习路线(附思维导图和PDF下载)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/578331.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI计算平台设计方案:901-基于3U VPX的图像数据AI计算平台

一、产品概述 设备基于3U VPX的导冷结构,集成FPGA接口预处理卡,GPU板卡、飞腾ARM处理卡,实现光纤、差分电口或者Camera link的图像接入,FPGA信号预处理,GPU AI计算,飞腾ARM的采集管理存储。 二、系统…

2023年第十四届蓝桥杯大赛软件类省赛C/C++研究生组真题(代码完整题解)

C题-翻转⭐ 标签:贪心 简述:如果 S 中存在子串 101 或者 010,就可以将其分别变为 111 和 000,操作可以无限重复。最少翻转多少次可以把 S 变成和 T 一样。 链接: 翻转 思路:要求步骤最少->S每个位置最多修改一次->从头开始遍历不匹配就翻转->翻转不了就-1 …

HarmonyOS 应用开发之线程模型

Stage模型下的线程主要有如下三类: 主线程 执行UI绘制。管理主线程的ArkTS引擎实例,使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例,例如使用TaskPool(任务池)创建任务或取消任务、启动和终止Wor…

harbor api v2.0

harbor api v2.0 v2.0 v2.0 “harbor api v2.0”与原来区别较大,此处harbor也做了https。另外,通过接口拿到的数据也是只能默认1页10个,所以脚本根据实际情况一页页的抓取数据 脚本主要用于统计repo、image,以及所有镜像的tag数&…

学习鸿蒙基础(9)

目录 一、鸿蒙国际化配置 二、鸿蒙常用组件介绍 三、鸿蒙像素单位介绍 四、鸿蒙布局介绍 1、Row与Column线性布局 2、层叠布局-Stack 3、弹性布局 4、栅格布局 5、网格布局 一、鸿蒙国际化配置 base目录下为默认的string。en_US对应美国的。zh_CN对应中国的。新增一个s…

基于单片机模糊算法温度控制系统设计

**单片机设计介绍, 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机模糊算法温度控制系统设计是一个综合性的项目,结合了单片机技术、传感器技术、模糊控制算法等多个方面。以下是对该设计的概要…

kubernetes(K8S)学习(六):K8S之Dashboard图形界面

K8S之Dashboard图形界面 一、Dashboard简介二、k8s安装Dashboard(1)下载Dashboard镜像(可选)(2)根据yaml文件创建资源(3)查看资源(4)生成登录需要的token(5)使用火狐 / 搜狗浏览器访问(个人用的搜狗) 一、Dashboard简介 官网&…

Chrome 插件打包发布

插件打包发布 一、打包成 zip 包 最简单方便的一种其实就是打包成 zip 包,通过下载链接进行下载,在包里面通过设置版本号和数据库的版本号对比来提醒用户进行新包的下载。 二、发布到 Chrome 应用商店 1. 注册成为开发者 在发布到 chrome 应用商店之…

Java复习第十三天学习笔记(HTML),附有道云笔记链接

【有道云笔记】十三 3.29 HTML https://note.youdao.com/s/Ru3zoNqM 一、基本标签 HTML:超文本标记语言 定义页面结构 CSS&#xff1a;层叠样式表 页面显示的样式、排版 BootStrap JS: JavaScript 界面交互(动态交互、逻辑) JQuery <!DOCTYPE html> <html> &l…

面试题:JVM的垃圾回收

一、GC概念 为了让程序员更专注于代码的实现&#xff0c;而不用过多的考虑内存释放的问题&#xff0c;所以&#xff0c;在Java语言中&#xff0c;有了自动的垃圾回收机制&#xff0c;也就是我们熟悉的GC(Garbage Collection)。 有了垃圾回收机制后&#xff0c;程序员只需要关…

unity 数据的可视化

【Unity 实用插件篇】| 可视化图表插件XCharts (折线图、柱状图、饼图等)详细教学-腾讯云开发者社区-腾讯云 Package https://github.com/XCharts-Team/XCharts/releases 官方文档案例 入门教程&#xff1a;5分钟上手 XCharts 3.0 | XCharts (xcharts-team.github.io)

C# OpenCvSharp-HoughCircles(霍夫圆检测) 简单计数

目录 效果 项目 代码 下载 效果 项目 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using OpenCvSharp; using O…