卷积神经网络(CNN)——基础知识整理

文章目录

1、卷积神经网络

2、图片格式

3、图片卷积运算

4、Kernel 与 Feature Map

5、padding/边缘填充

6、Stride/步长

7、pooling/池化

8、shape

9、epoch、batch、Batch Size、step

10、神经网络

11、激活函数


1、卷积神经网络

既然叫卷积神经网络,这里面首先是卷积,然后是神经网络,是二者的一个结合,卷积这个概念实际上来自信号处理领域,一般是对2个信号进行卷积运算,见下图:

神经网络,这是机器学习的元老,是对人脑神经元工作机制的模拟,每个神经元是一个计量单元,输入的数据与权重进行相乘、求和,再加上偏置,得到的数据再经过激活函数,将结果进行输出,见下图,多个神经元相互连接组成神经网络,具体就不展开说了。

卷积神经网络在图像分类和识别领域的应用非常多,最早用于手写数字的分类识别,后来逐渐发展起来。

2、图片格式

首先从手写体图像识别说起,一副图片如果是单色的,那么可以看成是一个二维的数字矩阵,每个像素点的颜色都可以用灰度值来表示;那如果图像是彩色的,可以将图像看成是RGB三个单色图片叠加的组合。

每一张图片的每一个像素点,其实都是一个数值,整体可看成一个三维矩阵。

3、图片卷积运算

那么对一个彩色图像做卷积,到底做了什么呢?下面这张动图,很好地展示了图像卷积计算的过程,原始图像有RGB三个通道channel1-3,对应有3个卷积核Kernel1-3,每一个通道的图片与对应的卷积核做乘法运算,每个通道得到的数值再相加,加上总体的偏置Bias得到特征图(feature map)里面的一个值。

下面是这个图是一个立体的展示:

4、Kernel 与 Feature Map

这里面第一个问题,就是卷积核为什么是3*3大小的,实际上这个尺寸也是经过学者们不断研究总结出来的,目前认为3*3的感受野足够用,而且运算量也会相对低,还有1*1的卷积核在使用,其他的基本不用了。

第二个问题,卷积核里面的参数是怎么来的,其实这里面的参数机器学习要实现的,当我们把所有的核参数都调整好,那这个模型也就确定了。也有一些先验的卷积核,如下面的核,进行卷积之后,可以实现锐化和边缘提取的效果。

那我们对一幅图片进行卷积之后,就会形成一个Feature Map,它会提取一些特征,用不同的核进行卷积就会输出多个Feature Map。

  • 卷积核/Kernels(convolution kernel)也叫过滤器、滤波器。
  • 特征图/Feature map,当图像像素值经过过滤器后得到的就是特征图。

下面这两张图就很直观地展示了kernel 和 feature map的实际样子。

卷积神经网络处理过程中,随着模型运算的深入,图像的尺寸(h*w)会越来越小,但是提取的特征会越来越多。

5、padding/边缘填充

这里面由于边界的问题,每一次卷积之后,图像不可避免地会被压缩一点,这就涉及到一个概念padding,如果设置padding的值为‘same’,则会在原图像周围补充1圈像素点,一般补0,这样后面的图像尺寸都会与原图像相同。默认参数是“valid”,翻译过来是有效的意思,这里的有效指的是与卷积核做运算的图片像素都是有效的,实际上就是没有外圈的补0。

unvaildvalid

下图展示的就是带padding的卷积效果,这个图的问题是用的是4*4的卷积核,实际中没有有4*4卷积核的。

用3*3的卷积核,可保持图像卷积后尺寸不变。

图片引自:https://github.com/vdumoulin/conv_arithmetic

6、Stride/步长

上图是步长为1的情况,如果步长为2,就是相当每隔两行或者两列进行卷积,实际上起到了降维的作用,就是卷积后的feature map尺寸会变小。

图片引自:https://github.com/vdumoulin/conv_arithmetic

7、pooling/池化

池化主要作用是把数据降维,也叫下采样,可以有效的避免过拟合。主要有两种池化方式,Max pooling / avg pooling,通常情况下,池化区域是2*2大小,池化之后,4*4的图片,会变成2*2大小。

8、shape

在tensorflow和pytorch中,shape的结构有所区别:

  • tensorflow输入shape为(batch_size,  height, weight, in_channels)/(样本数、图像高度、图像宽度, 图像通道数)
  • pytorch输入shape为(batch_size, in_channels, height, weight)

上图中,

输入图片的shape:[in_channels, height, weight]/[3,8,8];

卷积核的shape:[out_channels, in_channels, height, weight]/[5,3,3,3];

输出图片的shape:[out_channels, out_height, out_weight]/[5,6,6];

卷积核的输入通道数(in depth)由输入矩阵的通道数(in_channels)所决定。比如:一个RGB格式的图片,其输入通道数为3。

输出矩阵的通道数(out depth)由卷积核的输出通道数所决定,比如下面这个动画当中,卷积核有8个,那么输出out_channels则为8。

图片 引自:https://animatedai.github.io/

9、epoch、batch、Batch Size、step

  • epoch:表示将训练数据集中的所有样本都过一遍(且仅过一遍)的训练过程。在一个epoch中,训练算法会按照设定的顺序将所有样本输入模型进行前向传播、计算损失、反向传播和参数更新。一个epoch通常包含多个step。
  • batch:一般翻译为“批次”,表示一次性输入模型的一组样本。在神经网络的训练过程中,训练数据往往是很多的,比如几万条甚至是几十万条——如果我们一次性将这上万条的数据全部放入模型,对计算机性能、神经网络模型学习能力等的要求太高了;那么就可以将训练数据划分为多个batch,并随后分批将每个batch的样本一起输入到模型中进行前向传播、损失计算、反向传播和参数更新。但要注意,一般batch这个词用的不多,多数情况下大家都是只关注batch size的。
  • Batch Size(批大小):表示在单次训练中传递给模型的图像数量,我们在神经网络训练过程中,往往需要将训练数据划分为多个batch;而具体每一个batch有多少个样本,那么就是batch size指定的了。
  • step:一般翻译为“步骤”,表示在一个epoch中模型进行一次参数更新的操作。通俗地说,在神经网络训练过程中,每次完成对一个batch数据的训练,就是完成了一个step。

10、神经网络

实际上,上面的卷积处理过程,都是在对图片进行特征提取,而最终要进行分类或预测就需要借助神经网络了,所以一般在卷积处理之后需要对数据进行压平(flatten)操作,使其变为1维的数据,便于送入神经网络的输入层。

神经网络模型里面(见下图),全连接层/Dense层是深度学习中常用的一种神经网络层,也称为密集连接层或多层感知机层。它既能当输入层(input layer),又能当输出层(output layer),还能当中间层(Hidden layer)。

推荐一个绘制神经网络图的工具:NN SVG

11、激活函数

在神经网络中,激活函数用于引入非线性,使网络能够学习复杂的映射关系。如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。以下是一些常用的激活函数。常用的有:

参考:机器学习算法那些事

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/578901.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node.js中Router的使用

文章目录 介绍router的优点1.导入Express和创建Router:2. 定义路由:3.将router暴露到模块外:4. 将Router挂载到Express应用中:4.1.引入router4.2.使用中间件让router在Express应用中生效(三种写法) 5. 完整示例:5.1.编…

前端三剑客 —— HTML (上)

前端 前端是什么? 把我们的数据以各种方式(如:表格、饼图、柱状图等)呈现给用户,我们就可以称之为前端。 做前端需要的工具? notepad、editplus、notepad、VS code、webstorm等,一般用于前端开…

FFmpeg将绿幕视频处理成透明视频播放

怎么在网页端插入透明视频呢,之前在做Web3D项目时,使用threejs可以使绿幕视频透明显示在三维场景中,但是在网页端怎么让绿幕视频透明显示呢? 如图上图,视频背景遮挡住后面网页内容 想要如下图效果 之前有使用过ffmpeg…

想做跨境电商测评自养号需要满足什么条件?

测评对于卖家来说算是一种低成本,高回报的推广营销方式,对于商品流量,转化率,关键词质量分,链接权重等都起到了一定的辅助作用,但凡事都有好坏,倘若处理不得当,很容易影响店铺&#…

通过InoDriverShop伺服调试软件连接汇川SV660F系列伺服的具体方法示例

通过InoDriverShop伺服调试软件连接汇川SV660F系列伺服的具体方法示例 具体连接伺服驱动器的步骤可参考以下内容: 启动InoDriverShop,新建或打开工程

[C++初阶] 爱上C++ : 与C++的第一次约会

🔥个人主页:guoguoqiang 🔥专栏:我与C的爱恋 本篇内容带大家浅浅的了解一下C中的命名空间。 在c中,名称(name)可以是符号常量、变量、函数、结构、枚举、类和对象等等。工程越大,名称…

什么是缓冲区溢出攻击?

缓冲区是内存存储区域,在数据从一个位置传输到另一个位置时临时保存数据。当数据量超过内存缓冲区的存储容量时,就会发生缓冲区溢出(或buffer overrun)。结果,试图将数据写入缓冲区的程序会覆盖相邻的内存位置。 例如…

【论文通读】UFO:A UI-Focused Agent for Windows OS Interaction

UFO:A UI-Focused Agent for Windows OS Interaction 前言AbstractMotivationMethodsExperimentConclusion 前言 Windows客户端第一个JARVIS,利用GPT4 Vision识别截图信息辅助智能体自动化执行操作,作为微软大肆宣传的一篇工作,其…

学习笔记——C语言基本概念指针(上)——(7)

今天学习了指针,指针吧理解有点小难,慢慢分析就懂。 在开始学指针之前先回顾一下C语言的数据类型如下图所示: 按照分类分别为: 1->基础数据类型:char ;short; int; long; float&…

【数据结构】树tree

树的遍历 广度遍历Breadth-first traversal Breadth-first traversal is the traversal strategy used in the binary tree.Breadth first traversal, also known as level order traversal is the traversal strategy used in a binary tree. It involves visiting all the …

短视频矩阵系统---开发源头交付

短视频矩阵系统---开发源头交付 短视频矩阵系统的核心开发步骤包括以下几个方面: 1. 系统设计:根据需求分析,设计出相应的系统架构,包括数据库设计、系统功能模块设计等。 2. 开发基础功能:基础功能包括短视频的上传、…

el-select的错误提示不生效、el-select验证失灵、el-select的blur规则失灵

发现问题 在使用el-select进行表单验证的时候&#xff0c;发现点击下拉列表没选的情况下&#xff0c;他不会提示没有选择选项的信息&#xff0c;我设置了rule如下 <!--el-select--><el-form-item label"等级" prop"level"><el-select v-m…