4.机器学习-十大算法之一线性回归算法(LinearRegression)案例讲解

机器学习-十大算法之一线性回归算法案例讲解

  • 一·摘要
  • 二·个人简介
  • 三·什么是线性回归
  • 四·LinearRegression使用方法
  • 五·糖尿病数据线性回归预测
    • 1.数据说明
    • 2.导包
    • 3.导入数据
    • 4.脱敏处理
    • 5.抽取训练数据和预测数据
    • 6.创建模型
    • 7.预测
    • 8.线性回归评估指标
    • 9.研究每个特征和标记结果之间的关系.来分析哪些特征对结果影响较大
    • 10.结果
  • 六·波士顿房价预测
    • 1.前言
    • 2.数据说明
    • 3.数据导入
    • 4.查看数据
    • 5.查看缺失值
    • 6.描述性数据分析
    • 7.预测性数据分析
    • 8.预测

一·摘要

线性回归是一种用于预测数值型数据的统计学分析方法,它通过建立一个或多个自变量与因变量之间的线性关系来进行预测。

线性回归的基本思想是通过拟合最佳直线(也就是线性方程),来描述自变量和因变量之间的关系。这条直线被称为回归线,其目的是使得所有数据点到这条直线的垂直距离(即残差)的平方和最小。这个最小化过程通常称为最小二乘法。

二·个人简介

🏘️🏘️个人主页:以山河作礼。
🎖️🎖️:Python领域新星创作者,CSDN实力新星认证,CSDN内容合伙人,阿里云社区专家博主,新星计划导师,在职数据分析师。

💕💕悲索之人烈焰加身,堕落者不可饶恕。永恒燃烧的羽翼,带我脱离凡间的沉沦。

在这里插入图片描述

🐘 希望大家能持续支持,共同向前迈进!😁
如果您觉得文章有价值,
欢迎留言💬,点赞👍,收藏🔖并关注我们➕🤝。
🪐💫💫💫💫💫💫💫热门专栏💫💫💫💫💫💫💫🪐
类型专栏
Python基础Python基础入门—详解版
Python进阶Python基础入门—模块版
Python高级Python网络爬虫从入门到精通🔥🔥🔥
Web全栈开发Django基础入门
Web全栈开发HTML与CSS基础入门
Web全栈开发JavaScript基础入门
Python数据分析Python数据分析项目🔥🔥
机器学习机器学习算法🔥🔥
人工智能人工智能

三·什么是线性回归

线性回归是一种非常简单易用且应用广泛的算法,其原理也非常容易理解,因此非常适合作为机器学习的入门算法。当我们在中学学习二元一次方程时,我们通常将y视为因变量,x视为自变量,从而得到方程:

y = a x + b y = ax + b y=ax+b

其中, a a a 是斜率,表示自变量 x x x 对因变量 y y y 的影响程度; b b b 是截距,表示当 x = 0 x=0 x=0 y y y 的值。线性回归的目标就是找到最佳的参数 a a a b b b,使得预测值 y ^ \hat{y} y^ 与实际值 y y y 之间的差异(通常是平方差)最小。

当我们只用一个x来预测y,就是一元线性回归,也就是在找一个直线来拟合数据。比如,我有一组数据画出来的散点图,横坐标代表广告投入金额,纵坐标代表销售量,线性回归就是要找一条直线,并且让这条直线尽可能地拟合图中的数据点。
在这里插入图片描述
这里我们得到的拟合方程是y = 0.0512x + 7.1884,此时当我们获得一个新的广告投入金额后,我们就可以用这个方程预测出大概的销售量。

线性回归模型可以通过最小化损失函数来求解参数,常用的损失函数是均方误差(Mean Squared Error, MSE)。通过解析方法或数值优化方法,如梯度下降(Gradient Descent),可以找到最优的参数 a a a b b b

线性回归模型不仅可以用于简单的一元线性回归问题,还可以推广到多元线性回归,即有多个自变量的情况。在多元线性回归中,方程可以表示为:

y = X β + ϵ \mathbf{y} = \mathbf{X}\beta + \epsilon y=Xβ+ϵ

其中, m a t h b f y mathbf{y} mathbfy 是因变量向量, m a t h b f X mathbf{X} mathbfX 是包含所有自变量的矩阵, β \beta β 是参数向量, ϵ \epsilon ϵ 是误差项。

四·LinearRegression使用方法

  1. 导入库和数据:首先需要导入scikit-learn库,并加载需要进行线性回归分析的数据集。
  2. 创建模型对象:通过sklearn.linear_model.LinearRegression()创建一个线性回归模型的对象。在这一步中,您可以根据需要设置模型的参数,例如是否计算截距(fit_intercept)等。
  3. 训练模型:使用fit()方法来训练模型。这通常涉及到将训练数据(特征和标签)传递给fit()方法。例如,lineModel.fit(X_train, Y_train),其中X_train是训练特征数据,Y_train是对应的标签数据。
  4. 进行预测:训练完成后,可以使用predict()方法来对新的数据进行预测。例如,lineModel.predict(X_test),其中X_test是您想要预测的新数据。
  5. 评估模型:最后,可以使用score()方法来评价模型的性能,这通常会给出一个表示模型拟合优度的 R 2 R^2 R2分数或其他指标。

五·糖尿病数据线性回归预测

1.数据说明

diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。

下面对数据集变量说明下,方便大家理解数据集变量代表的意义:

age:年龄sex:性别bmi(body mass index):身体质量指数,是衡量是否肥胖和标准体重的重要指标,理想BMI(18.5~23.9) = 体重(单位Kg) ÷ 身高的平方 (单位m)bp(blood pressure):血压(平均血压)s1,s2,s3,s4,s4,s6:六种血清的化验数据,是血液中各种疾病级数指针的6的属性值。s1——tc,T细胞(一种白细胞)s2——ldl,低密度脂蛋白s3——hdl,高密度脂蛋白s4——tch,促甲状腺激素s5——ltg,拉莫三嗪s6——glu,血糖水平

【注意】:以上的数据是经过特殊处理,
10个数据中的每个都做了均值中心化处理,然后又用标准差乘以个体数量调整了数值范围。验证就会发现任何一列的所有数值平方和为1。

2.导包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
  • 用于导入三个常用的数据处理和可视化库:numpy、pandas和matplotlib。
from sklearn.linear_model import LinearRegression
  • 从sklearn库中导入线性回归模型。

3.导入数据

from sklearn.datasets import load_diabetes
  • 从sklearn库中导入糖尿病数据集。
diabetes=load_diabetes()
data = diabetes['data']
target = diabetes['target']
feature_names = diabetes['feature_names']
  • 加载糖尿病数据集,并将数据集的特征数据、目标数据和特征名称分别赋值给变量data、target和feature_names。

4.脱敏处理

df = pd.DataFrame(data,columns= feature_names)
df

在这里插入图片描述

  • 使用pandas库创建一个DataFrame对象,并将数据和特征名称作为参数传递给DataFrame构造函数。然后,将创建的DataFrame对象赋值给变量df

5.抽取训练数据和预测数据

from sklearn.model_selection import train_test_split
  • 从sklearn库中导入train_test_split函数。train_test_split函数用于将数据集划分为训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.2)
  • 使用train_test_split函数将数据集划分为训练集和测试集。其中,data表示特征数据,target表示目标数据,test_size=0.2表示将20%的数据作为测试集,剩余的80%作为训练集。划分后的训练集和测试集分别赋值给变量x_train、x_test、y_train和y_test。

6.创建模型

liner = LinearRegression()
liner.fit(x_train,y_train)
  • 创建一个线性回归模型,并使用训练集数据进行拟合。首先,通过LinearRegression()创建一个线性回归模型对象,然后使用fit()方法将训练集的特征数据x_train和目标数据y_train传入模型进行拟合。

求线性方程: y = WX + b 中的W系数和截距b

df.head(4)

在这里插入图片描述

  • 显示DataFrame对象df的前4行数据。head()方法默认返回前5行数据,但可以通过传入参数来指定返回的行数

系数w 系数大小类比权重

liner.coef_

在这里插入图片描述

  • 获取线性回归模型的系数。coef_属性返回一个数组,其中包含模型中每个特征对应的系数值。这些系数表示了每个特征对目标变量的影响程度。

截距b

b= liner.intercept_
b

在这里插入图片描述

  • 获取线性回归模型的截距。intercept_属性返回一个数值,表示模型中的截距值。截距是一个常数项,用于在特征数据为0时预测目标变量的值。

7.预测

y_pred = liner.predict(x_test)
y_pred

在这里插入图片描述

  • 使用线性回归模型对测试集数据进行预测,并将预测结果赋值给变量y_pred。predict()方法接受一个特征数据集作为输入,并返回对应的目标变量预测值。

得分,回归的得分一般比较低

liner.score(x_test,y_test)
  • 计算线性回归模型在测试集上的拟合优度得分。score()方法接受两个参数,分别是特征数据集和目标变量数据集,返回一个数值表示模型的拟合优度得分。在这里,输入的测试集特征数据为x_test,目标变量数据集为y_test,输出的拟合优度得分为liner.score(x_test, y_test)

8.线性回归评估指标

# metrics  评估from sklearn.metrics import mean_absolute_error as msemse(y_test,y_pred)

在这里插入图片描述

  • 计算线性回归模型在测试集上的均方误差(Mean SquaredError,MSE)。mean_absolute_error函数用于计算平均绝对误差,但在这里被重命名为mse。输入的参数为真实目标变量数据集y_test和预测目标变量数据集y_pred,输出的结果为均方误差。

9.研究每个特征和标记结果之间的关系.来分析哪些特征对结果影响较大

绘制一个包含10个子图的图表,每个子图显示一个特征与目标变量之间的关系

# 画子图
# 10个
# 2行五列
plt.figure(figsize=(15, 8))
for i, col in enumerate(df.columns):data = df[col]#     display(data)# 画子图ax = plt.subplot(2, 5, i + 1)ax.scatter(data, target)# 线性回归linear = LinearRegression()linear.fit(df[[col]], target)# 训练后得到w,b的值w = linear.coef_#     print(w)b = linear.intercept_#     print(b)#画预测的直线 :y = wx+bx = np.array([data.min(), data.max()])y = w * x + bax.plot(x,y,c='r')# 标题ax.set_title(f'{col}:{int(w[0])}')

在这里插入图片描述

10.结果

从以上分析可知,单独看所有特征的训练结果,并不没有得到有效信息,我们拆分各个特征与指标的关系,可以看出:

bmi与糖尿病的相关性非常高,bp也有一定的关系,但是是否是直接关系,还是间接关系,有待深入考察。其他血清指标多少都和糖尿病有些关系,有的相关性强,有的相关性弱。

六·波士顿房价预测

1.前言

回归分析是一种统计学方法,用于研究变量之间的关系,特别是一个或多个自变量(解释变量)对因变量(响应变量)的影响。
在这里插入图片描述
目前回归分析的研究范围可以分为如下几个部分组成

线性回归:一元线性回归、多元线性回归和多个因变量与多个自变量的回归。

回归诊断:通过数据推断回归模型基本假设的合理性、基本假设不成立时对数据的修正、回归方程拟合效果的判断以及回归函数形式的选择。

回归变量的选择:根据什么标准选择自变量和逐步回归分析方法。

参数估计方法:偏最小二乘回归、主成分回归和岭回归。

非线性回归:一元非线性回归、分段回归和多元非线性回归。

定性变量的回归:因变量含有定性变量和自变量含有定性变量。

2.数据说明

波士顿房价数据说明:此数据源于美国某经济学杂志上,分析研究波士顿房价( Boston HousePrice)的数据集。数据集中的每一行数据都是对波士顿周边或城镇房价的情况描述,下面对数据集变量说明下,方便大家理解数据集变量代表的意义。

CRIM: 城镇人均犯罪率
ZN: 住宅用地所占比例
INDUS: 城镇中非住宅用地所占比例
CHAS: 虚拟变量,用于回归分析
NOX: 环保指数
RM: 每栋住宅的房间数
AGE: 1940 年以前建成的自住单位的比例
DIS: 距离 5 个波士顿的就业中心的加权距离
RAD: 距离高速公路的便利指数
TAX: 每一万美元的不动产税率
PTRATIO: 城镇中的教师学生比例
B: 城镇中的黑人比例
LSTAT: 地区中有多少房东属于低收入人群
MEDV: 自住房屋房价中位数(也就是均价)

首先对数据分析,处理特殊异常值,然后才是模型和评估,并应用模型进行预测。

3.数据导入

1.首先导入数据集,对数据进行分析

#导入Python常用数据分析的库import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()    #设置画图空间为 Seaborn 默认风格names=['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT','PRICE']boston=pd.read_csv("/Users/glenji/Desktop/housing.csv",names=names,delim_whitespace=True)
boston.head(10)

在这里插入图片描述

4.查看数据

查看各字段基础信息:

boston.info()

在这里插入图片描述

5.查看缺失值

#查看缺失值boston.isnull().sum()

在这里插入图片描述

6.描述性数据分析

①查看描述性数据统计:可以看到各个字段的均值、中位数、标准差等。

描述性数据统计

boston.describe()

在这里插入图片描述
查看各字段的相关性:可以看到房子价格跟住宅的房间数成比较强的正相关,而跟低收入人数比例有比较强的负相关。

#查看相关性corrboston = boston.corr()
corrbostonplt.figure(figsize=(10,10))    #设置画布
sns.heatmap(corrboston,annot=True,cmap='RdGy')
plt.show()

在这里插入图片描述
查看是否穿过查尔斯河对房价的影响:可以看到被河流穿过的豪宅仅占比6.92%,而被查尔斯河穿过的豪宅,比没有被穿过的豪宅平均贵了28.7%。

#查看是否穿过查尔斯河的两类占比
#可以看到被河流穿过的豪宅仅占比6.92%fig,ax = plt.subplots(1,2,figsize=(10,5))boston['CHAS'].value_counts().plot.pie(ax=ax[0],shadow=False,autopct='%1.2f%%')
ax[0].set_ylabel('')    #设置y轴标签
ax[0].set_xlabel('CHAS')    #设置x轴标签sns.countplot('CHAS',data=boston,ax=ax[1])
ax[1].set_ylabel('')
ax[1].set_xlabel('CHAS')
plt.show()

在这里插入图片描述

#再来看看两种不同类型的房子的价值如何
#可以看到被查尔斯河穿过的豪宅,比没有被穿过的豪宅平均贵了28.7%bostonCHAS = boston[['CHAS','PRICE']]    #先将CHAS和PRICE两列数据取出bostonCHAS1=bostonCHAS.pivot_table(values='PRICE',    #计算的值index='CHAS',       #透视的行,分组的依据aggfunc='mean')            #聚合函数# 对透视表进行降序排列
bostonCHAS1 = bostonCHAS1.sort_values(by='PRICE',     # 排序依据ascending=False                 # 是否升序排列)bostonCHAS1

在这里插入图片描述
④看看各个字段与价格的散点图:以初步了解价格与相应字段的关系。可以看到不是所有的字段与价格都有较强的相关关系,但本例中不涉及多元线性回归的向后删除,仅做最简单的多元性性回归的分析处理。

x_data = boston[['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT']] # 导入所有特征变量
y_data = boston[['PRICE']] # 导入目标值(房价)plt.figure(figsize=(18,10))for i in range(13):plt.subplot(4,4,i+1)plt.scatter(x_data.values[:,i],y_data,s = 5)    #.values将DataFrame对象X_df转成ndarray数组plt.xlabel(names[i])plt.ylabel('Price')plt.title(str(i+1)+'. '+names[i]+' - Price')  plt.tight_layout()
plt.show()

在这里插入图片描述

7.预测性数据分析

①选取线性回归字段:

from sklearn import linear_model#定义线性回归的x和y变量
x=pd.DataFrame(boston[['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT']])
y=boston['PRICE']x

在这里插入图片描述
②建立线性回归模型,并调用:可以看到各个字段的回归系数,可以写出一个回归方程:y=ax1+bx2+……,理论上你知道一套新房子的各个字段,带入公式即可预测出价格。

#建立线性回归模型,并将变量带入模型进行训练。
clf = linear_model.LinearRegression()
clf.fit(x, y)#查看回归系数。本例为一元回归,所以只有一个系数。
print('回归系数:', clf.coef_)

在这里插入图片描述
③计算回归系数:计算出的回归系数为0.74,回归拟合效果较好。

from sklearn.metrics import r2_score
score = r2_score(y, y_pred)
score

在这里插入图片描述

8.预测

④可以进行简单的预测:

y_pred =clf.predict(x)
print(y_pred)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/586072.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv9改进策略 :主干优化 | 无需TokenMixer也能达成SOTA性能的极简ViT架构 | CVPR2023 RIFormer

💡💡💡本文改进内容: token mixer被验证能够大幅度提升性能,但典型的token mixer为自注意力机制,推理耗时长,计算代价大,而RIFormers是无需TokenMixer也能达成SOTA性能的极简ViT架构 ,在保证性能的同时足够轻量化。 💡💡💡RIFormerBlock引入到YOLOv9,多个数…

GIt的原理和使用(五):模拟多人协作的两种情况

目录 多人协作 多人协作一 准备工作 协作开发 多人协作二 准备工作 额外场景 申请单合并分支 更推荐写法 远程分支删除后,本地git branch -a依然能看到的解决办法 多人协作 多人协作一 目标:在远程master分支下的file.txt文件新增代码“aaa”…

基础框架SSM-----------spring篇

spring系统架构 Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器(框架)!!!!!!!! IOC(Inversion of Control)控制反转------解耦合 如图使我们所熟悉的基本逻辑,在业务层中调用Dao层的对象,但是当我们Dao层进行修改的时候…

springcloud基本使用二(远程调用)

创建两个springboot maven子项目 子项目名称分别为order-server和user-server 配置user-server子项目: 所需依赖: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependenc…

【数据结构】AVL 树

文章目录 1. AVL 树的概念2. AVL 树节点的定义3. AVL 树的插入4. AVL 树的旋转5. AVL 树的验证6. AVL 树的删除7. AVL 树的性能 前面对 map / multimap / set / multiset 进行了简单的介绍【C】map & set&#xff0c;在其文档介绍中发现&#xff0c;这几个容器有个共同点是…

【前端面试3+1】05v-if和v-show的区别、v-if和v-for能同时使用吗、Vuex是什么?【合并两个有序链表】

一、v-if和v-show的区别 v-if 和 v-show 是 Vue.js 中用来控制元素显示与隐藏的指令。 1.v-if&#xff1a; v-if 是根据表达式的真假值来决定是否渲染元素。当表达式为真时&#xff0c;元素会被渲染到 DOM 中&#xff1b;当表达式为假时&#xff0c;元素不会被渲染到 DOM 中。每…

SWM341系列SDRAM应用

SWM341系列SDRAM应用 1、不同的时钟频率下&#xff0c;SDRAM的初始化参数设置 现象&#xff1a;驱屏应用&#xff0c;显示一段时间后出现卡住的现象 分析&#xff1a;SDRAM的初始 化参数优化 主频150Mhz,建议配置CASL 3&#xff0c;TRFC ≥8。 主频100Mhz,ClkDiv可配置为1…

【记录40】echarts离散图

EchartsEvent(val, data, Ymax) {var _that this;const timestampToTime function(timestamp) {var date new Date(timestamp * 1000);//时间戳为10位需*1000&#xff0c;时间戳为13位的话不需乘1000let Y date.getFullYear() -;let M (date.getMonth()1 < 10 ? 0(da…

3、jvm基础知识(三)

如何判断堆上的对象没有被引用&#xff1f; 常见的有两种判断方法&#xff1a;引用计数法和可达性分析法。 引用计数法会为每个对象维护一个引用计数器&#xff0c;当对象被引用时加1&#xff0c;取消引用时减1。 引用计数法的优点是实现简单&#xff0c;缺点有两点&#xff1…

Python | Leetcode Python题解之第3题无重复字符的最长子串

题目&#xff1a; 题解&#xff1a; class Solution:def lengthOfLongestSubstring(self, s: str) -> int:# 哈希集合&#xff0c;记录每个字符是否出现过occ set()n len(s)# 右指针&#xff0c;初始值为 -1&#xff0c;相当于我们在字符串的左边界的左侧&#xff0c;还没…

RWKV_Pytorch:支持多硬件适配的开源大语言模型推理框架

亲爱的技术探索者们&#xff0c;今天我要向大家隆重推荐一个在开源社区中崭露头角的项目——RWKV_Pytorch。这是一个基于Pytorch的RWKV大语言模型推理框架&#xff0c;它不仅具备高效的原生Pytorch实现&#xff0c;而且还扩展了对多种硬件的适配支持&#xff0c;让模型的部署和…

ios 之 netty版本swiftNio(socket创建)

SwiftNio 简介 用于高性能协议服务器和客户端的事件驱动、无阻塞的网络应用程序框架。 SwiftNIO是一个跨平台异步事件驱动的网络应用程序框架&#xff0c;用于快速开发可维护的高性能协议服务器和客户端。 这就像Netty&#xff0c;但是为Swift写的。 Xcode引入swiftNio 在实…