两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

两分钟1200帧的长视频生成器StreamingT2V来了,代码将开源

广阔的战场,风暴兵在奔跑……

prompt:Wide shot of battlefield, stormtroopers running…

这段长达 1200 帧的 2 分钟视频来自一个文生视频(text-to-video)模型,尽管 AI 生成的痕迹依然浓重,但我们必须承认,其中的人物和场景具有相当不错的一致性。

这是如何办到的呢?要知道,虽然近些年文生视频技术的生成质量和文本对齐质量都已经相当出色,但大多数现有方法都聚焦于生成短视频(通常是 16 或 24 帧长度)。然而,适用于短视频的现有方法通常无法用于长视频(≥ 64 帧)。

即使是生成短序列,通常也需要成本高昂的训练,比如训练步数超过 260K,批大小超过 4500。如果不在更长的视频上进行训练,通过短视频生成器来制作长视频,得到的长视频通常质量不佳。而现有的自回归方法(通过使用短视频后几帧生成新的短视频,进而合成长视频)也存在场景切换不一致等一些问题。

为了克服现有方法的缺点和局限,Picsart AI Resarch 等多个机构联合提出了一种新的文生视频方法:StreamingT2V。这也是一种自回归方法,并配备了长短期记忆模块,进而可以生成具有时间一致性的长视频。

  • 论文标题:StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text

  • 论文地址:https://arxiv.org/abs/2403.14773

  • 项目地址:https://streamingt2v.github.io/

如下是一段 600 帧 1 分钟的视频生成结果,可以看到蜜蜂和花朵都有非常出色的一致性:

prompt: Marvel at the diversity of bee species…

为此,该团队提出了条件注意力模块(CAM)。得益于其注意力性质,它可以有效地借用之前帧的内容信息来生成新的帧,同时还不会让之前帧的结构 / 形状限制新帧中的运动情况。

而为了解决生成的视频中人与物外观变化的问题,该团队又提出了外观保留模块(APM):其可从一张初始图像(锚帧)提取对象或全局场景的外观信息,并使用该信息调节所有视频块的视频生成过程。

为了进一步提升长视频生成的质量和分辨率,该团队针对自回归生成任务对一个视频增强模型进行了改进。为此,该团队选择了一个高分辨率文生视频模型并使用了 SDEdit 方法来提升连续 24 帧(其中有 8 帧重叠帧)视频块的质量。

为了使视频块增强过渡变得平滑,他们还设计了一种随机混合方法,能以无缝方式混合重叠的增强过的视频块。

方法

首先,生成 5 秒时长的 256 × 256 分辨率的视频(16fps),然后将其增强至更高的分辨率(720 × 720)。图 2 展示了其完整的工作流程。

长视频生成部分由初始化阶段(Initialization Stage)和流式文生视频阶段(Streaming T2V Stage)构成。

其中,初始化阶段是使用一个预训练的文生视频模型(比如可以使用 Modelscope)来生成第一个 16 帧的视频块;而流式文生视频阶段则是以自回归方式生成后续帧的新内容。

对于自回归过程(见图 3),该团队新提出的 CAM 可以利用之前视频块最后 8 帧的短期信息,实现块之间的无缝切换。另外,他们还会使用新提出的 APM 模块来提取一张固定锚帧的长期信息,使自回归过程能稳健地应对事物和场景细节在生成过程中的变化。

在生成得到了长视频(80、240、600、1200 或更多帧)之后,他们再通过流式优化阶段(Streaming Refinement Stage)来提升视频质量。这个过程会以自回归方式使用一个高分辨率文生短视频模型(如可使用 MS-Vid2Vid-XL),再搭配上新提出的用于无缝视频块处理的随机混合方法。而且后一步无需额外的训练,这使得该方法无需较高的计算成本。

条件注意力模块

首先,将所使用的预训练文生(短)视频模型记为 Video-LDM。注意力模块(CAM)的构成是一个特征提取器、一个向 Video-LDM UNet 注入的特征注入器。

其中特征提取器使用了逐帧的图像编码器,之后是与 Video-LDM UNet 直到中间层一直使用的一样的编码器层(并通过 UNet 的权重初始化)。

对于特征注入,这里的设计则是让 UNet 中的每个长程跳跃连接通过交叉注意力关注 CAM 生成的相应特征。

外观保留模块

APM 模块可通过使用固定锚帧中的信息来将长期记忆整合进视频生成过程中。这有助于维持视频块生成过程中的场景和对象特征。

为了让 APM 能平衡处理锚帧和文本指令给出的引导信息,该团队做出了两点改进:(1)将锚帧的 CLIP 图像 token 与文本指令的 CLIP 文本 token 混合起来;(2)为每个交叉注意力层引入了一个权重来使用交叉注意力。

自回归视频增强

为了自回归地增强 24 帧的生成视频块,这里使用的是高分辨率(1280x720)的文生(短)视频模型(Refiner Video-LDM,见图 3)。这个过程的做法是首先向输入视频块加入大量噪声,然后再使用这个文生视频扩散模型来进行去噪处理。

不过,这种方法不足以解决视频块之间的过渡不匹配的问题。

为此,该团队的解决方案是随机混合方法。具体详情请参阅原论文。

实验

在实验中,该团队使用的评估指标包括:用于评估时间一致性的 SCuts 分数、用于评估运动量和扭变误差的运动感知扭变误差(MAWE)、用于评估文本对齐质量的 CLIP 文本图像相似度分数(CLIP)、美学分数(AE)。

消融研究

为了评估各种新组件的有效性,该团队从验证集中随机采样 75 个 prompt 执行了消融研究。

用于条件处理的 CAM:CAM 能帮助模型生成更一致的视频,其 SCuts 分数比相比较的其它基线模型低 88%。

长期记忆:图 6 表明长期记忆能在自回归生成过程中极大帮助维持对象和场景的特征稳定。

在一个定量评估指标(人再识别分数)上,APM 实现了 20% 的提升。

用于视频增强的随机混合:与其它两个基准相比,随机混合能带来显著的质量提升,从图 4 中也能看到:StreamingT2V 可以得到更平滑的过渡。

StreamingT2V 对比基线模型

该团队通过定量和定性评估比较了集成上述改进的 StreamingT2V 与多种模型,包括使用自回归方法的图像到视频方法 I2VGen-XL、SVD、DynamiCrafter-XL、SEINE,视频到视频方法 SparseControl,文本到长视频方法 FreeNoise。

定量评估:从表 8 可以看出,在测试集上的定量评估表明,StreamingT2V 在无缝视频块过渡和运动一致性方面的表现最佳。新方法的 MAWE 分数也显著优于其它所有方法 —— 甚至比第二好的 SEINE 低 50% 以上。SCuts 分数上也有类似表现。

此外,在生成视频的单帧质量上,StreamingT2V 仅略逊于 SparseCtrl。这表明这个新方法能够生成高质量的长视频,并且比其它对比方法具有更好的时间一致性和运动动态。

定性评估:下图展示了 StreamingT2V 与其它方法的效果比较,可以看出新方法能在保证视频动态效果的同时维持更好的一致性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/586203.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

25.死锁

一个线程如果需要同时获取多把锁,就容易产生死锁。 t1线程获得A对象锁,接下来想获取B对象的锁。 t2线程获得B对象锁,接下来想获取A对象的锁。 /*** 死锁demo* param args*/public static void main(String[] args) {Object a new Object(…

Go的数据结构与实现【LRU Cache】

介绍 在本文中,我们将用Go实现LRU Cache。 LRU Cache 最近最少使用(LRU)是一种缓存逐出算法,它按使用顺序组织元素。在LRU中,最长时间没有被使用的元素会被从缓存中逐出。 例如,如果我们有一个容量为三…

蓝牙耳机哪个品牌的好用?五款热销机型推荐,新手入门必备!

​真无线蓝牙耳机近年来非常流行,它们不仅小巧便携,而且在佩戴舒适度和音质方面也逐步超越了有线耳机。面对市场上众多的真无线蓝牙耳机,选择合适的款式可能会令人困惑。我将为你推荐几款既舒适又性能表现不错的蓝牙耳机,希望能帮…

【学习】成为优秀的软件测试工程师需要学哪些知识

成为软件测试工程师,需要学习的内容非常的多,但是无非是这几大类,今天就和小编一起来看看这些知识,你是否都已经掌握。 01、测试环境的搭建 本部分主要是学习从操作系统开始,有关的计算机基础知识、软件和硬件知识、…

【java】关于String、StringBuffer和StringBuilder的那些事

在之前的文章中我们曾简单介绍过String这个引用类型变量,其实它还有许多特性,还有StringBuffer和StringBuilder这两个方法在字符串操作中也有非常重要的地位,接下来就由小编带大家梳理一下吧👊 目录 一、String 1、构造方法 2、…

分库分表 ——12 种分片算法

目录 前言 分片策略 标准分片策略 行表达式分片策略 复合分片策略 Hint分片策略 不分片策略 分片算法 准备工作 自动分片算法 1、MOD 2、HASH_MOD 3、VOLUME_RANGE 4、BOUNDARY_RANGE 5、AUTO_INTERVAL 标准分片算法 6、INLINE 7、INTERVAL COSID 类型算法 …

网络加速器数据可视化大屏:极速网络新体验从这里开始

在信息爆炸的时代,网络已经成为我们日常生活和工作中不可或缺的一部分。然而,网络速度慢、不稳定等问题时常困扰着我们,让许多重要的工作和学习进度受到严重影响。 网络加速器数据可视化大屏集数据分析、可视化展示于一体,它不仅能…

docker--部署 (超详版) (五)

环境准备:docker,mysql,redis,镜像,nginx 把虚拟机打开,连接xshell,参考博客: https://blog.csdn.net/m0_74229802/article/details/136965820?spm1001.2014.3001.5501 一&#x…

GoogLeNet

文章目录 Inception块GoogLeNet模型 Inception块 在GoogLeNet中,基本的卷积块被称为Inception块,如下图所示: Inception块由四条并行路径组成。 前三条路径使用窗口大小为1x1,3x3和 5x5的卷积,从不同空间大小中提取信息。中间的两条路径在输…

SambaNova 芯片:深入解析其架构和高性能秘诀

SambaNova——一家总部位于帕洛阿尔托的公司已经筹集了超过10亿美元的风险投资,不会直接向公司出售芯片。相反,它出售其定制技术堆栈的访问权限,该堆栈具有专门为运行最大的人工智能模型而设计的专有硬件和软件。 最近,SambaNova…

Kubernetes篇(三)— 资源管理

目录 前言资源管理介绍YAML语言介绍资源管理方式命令式对象管理命令式对象配置声明式对象配置 前言 本章节主要介绍yaml语法和kubernetes的资源管理方式 资源管理介绍 在kubernetes中,所有的内容都抽象为资源,用户需要通过操作资源来管理kubernetes。 …

hcia datacom课程学习(5):MAC地址与arp协议

1.MAC地址 1.1 含义与作用 (1)含义: mac地址也称物理地址,是网卡设备在数据链路层的地址,全世界每一块网卡的mac地址都是唯一的,出厂时烧录在网卡上不可更改 (2)作用&#xff1a…