深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

看这篇前请先把我上一篇了解一下:深入理解数据结构第一弹——二叉树(1)——堆-CSDN博客

前言:

相信很多学习数据结构的人,都会遇到一种情况,就是明明最一开始学习就学习了时间复杂度,但是在后期自己写的程序或者是做到哪个需要判断时间复杂度的题时,仍然判断不出来时间复杂度是多少,今天,我们结合我们上期学习的堆,给大家深入剖析一下时间复杂度这个概念,同时更深入的理解堆的概念,方便我们后期应用堆进行排序等。

目录

一、堆排序

1、堆排序的大体思路

2、堆排序的实例讲解

二、堆排序的时间复杂度

向下排序的时间复杂度

向上排序的时间复杂度

堆排序整体的时间复杂度

总结


一、堆排序

1、堆排序的大体思路

在上一篇我们已经讲过了堆是什么东西,我们已经知道堆有大堆和小堆两种形式,堆排序的想法正是借助它的这个特点诞生的,例如:

数组 { 7,8 ,3 ,5 ,1 ,9 ,5 ,4}在堆中分布为:

如图展示的是小堆,首先我们先强调一点,降序是需要小堆来解决,升序是需要大堆来解决

比如说图上这个数组,我们要求它的降序序列时,因为堆顶元素一定是堆中最小的,所以我们就可以把堆顶元素与堆尾元素进行交换,然后把堆尾元素刨除在外再进行降序排列

2、堆排序的实例讲解

堆排序与堆相比并没有什么新东西,把我前面那章看明白,这里直接把代码呈上

(除了test.c)其他的是直接从上一章搬过来的

Seqlist.h

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int sz;int capacity;
}HP;//初始化
void HeapInit(HP* php);
//销毁
void HeapDestory(HP* php);
//插入
void HeapPush(HP* php, HPDataType x);
//删除
void HeapPop(HP* php);
//找堆顶元素
HPDataType HeapTop(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);
//算个数
int HeapSize(HP* php);

test.c

//堆排序
void HeapSort(int* a, int n)
{//建堆——向下调整建堆O(N-log(n))for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);//再调整,选出次小数AdjustDown(a, end, 0);end--;}
}
int main()
{int a[] = { 7,8,3,5,1,9,5,4 };HeapSort(a, sizeof(a) / sizeof(int));return 0;
}

Seqlist.c

//堆
//初始化
void HeapInit(HP* php)
{assert(php);php->a = NULL;php->capacity = 0;php->sz = 0;
}
//销毁
void HeapDestory(HP* php)
{free(php->a);free(php);
}
//交换
void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}
//删除//向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//向下调整
void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child<n){if (child+1<n&&a[child + 1] < a[child]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->sz == php->capacity){int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);php->a = tmp;php->capacity = newcapacity;}php->a[php->sz] = x;php->sz++;//向上调整AdjustUp(php->a, php->sz - 1);
}
//删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->sz - 1]);php->sz--;//向下调整AdjustDown(php->a, php->sz,0);
}
//判断是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->sz == 0;
}
//找堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);assert(!HeapEmpty(php));return php->a[0];
}
//算个数
int HeapSize(HP* php)
{assert(php);return php->sz;
}

实现上述代码,我们就可以实现堆排序了

二、堆排序的时间复杂度

我们都知道在实现堆时有向上排序和向下排序两种,细心的人可能已经注意到,我在实现上面那个堆排序用例时,用的是向下排序,原因就是向下排序的时间复杂度更低,接下来,我们就来分析一下这两种排序各自的时间复杂度

向下排序的时间复杂度

向上排序的时间复杂度

堆排序整体的时间复杂度

计算堆排序整体的时间复杂度就是计算上面这两步的时间复杂度

第一步:

因为这一步实际上就是多次向下调整建堆,所以这一步时间复杂度就是向下调整法时间复杂度的倍数,那根据渐进表示法就可以表示为O(N-log(N)),因为当N很大时,log(N)比N小很多,所以可以忽略表示为O(N)

第二步:

第二步外循环需要N次,内循环看似每次都是一个完整的向下排序法,但其实随着循环次数的增加,里面向下排序的时间复杂度在不断减小,因为堆尾排过去的数字实际上就不用再参与堆排序的,所以这一步时间复杂度实际上是O(N*log)

因此,堆排序的时间复杂度为O(N+N*log(N))

总结

堆排序及其时间复杂度的讲解就到此为止了,如果有不理解的地方欢迎在评论区中指出或者与我私信交流,欢迎各位大佬来访!!!

创作不易,还请各位大佬点赞支持!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/587620.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库实践

什么是数据仓库&#xff1f; 数据仓库是一个用于存储大量数据并支持数据分析与报告的系统。它通常用于集成来自不同来源的数据&#xff0c;提供一个统一的视图&#xff0c;以便进行更深入的分析和决策。 数据仓库的主要优势&#xff1f; 决策支持&#xff1a;为企业决策提供可靠…

MegaSeg Pro for Mac v6.3.1 注册激活版 音视频DJ混音工具

MegaSeg Pro for Mac是一款专业的DJ和广播自动化软件&#xff0c;旨在为音乐专业人士提供强大的音乐播放和演播功能。这款软件具有多种功能&#xff0c;包括强大的音乐库管理&#xff0c;支持导入和组织大量音乐文件&#xff0c;可以轻松管理你的音乐收藏。它支持广泛的音频格式…

Java设计之道:色即是空,空即是色

0.引子 我们的这个世界上&#xff0c;存在这么一种东西&#xff1a; 第一&#xff1a;它不占据任何3D之体积&#xff0c;即它没有Volume第二&#xff1a;它也不占据任何2D之面积&#xff0c;即它没有Area第三&#xff1a;它也不占据任何1D之长度&#xff0c;即它没有Length 总…

华为审核被拒提示: 您的应用存在(最近任务列表隐藏风险活动)的行为,不符合华为应用市场审核标准

应用审核意见&#xff1a; 您的应用存在&#xff08;最近任务列表隐藏风险活动&#xff09;的行为&#xff0c;不符合华为应用市场审核标准。 修改建议&#xff1a;请参考测试结果进行修改。 请参考《审核指南》第2.19相关审核要求&#xff1a;https://developer.huawei.com/c…

37.HarmonyOS鸿蒙系统 App(ArkUI) 创建第一个应用程序hello world

HarmonyOS App(ArkUI) 创建第一个应用程序helloworld 线性布局 1.鸿蒙应用程序开发app_hap开发环境搭建 3.DevEco Studio安装鸿蒙手机app本地模拟器 打开DevEco Studio,点击文件-》新建 双击打开index.ets 复制如下代码&#xff1a; import FaultLogger from ohos.faultL…

element-ui badge 组件源码分享

今日简单分享 badge 组件的源码实现&#xff0c;主要从以下两个方面&#xff1a; 1、badge 组件页面结构 2、badge 组件属性 一、badge 组件页面结构 二、badge 组件属性 补充几个标签的用途&#xff1a; sub&#xff1a;下标、sup&#xff1a;上标、var 变量 代码如下&am…

单元测试——Junit (断言、常用注解)

单元测试 Junit单元测试框架 使用 断言测试 使用Assert.assertEquals(message, 预期值, 实际值); 这段代码是用于在测试中验证某个方法的返回值是否符合预期。其中&#xff0c;"方法内部有bug"是用于在断言失败时显示的提示信息。4是预期的返回值&#xff0c;index…

Linux系统---进程间通信与管道入门

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、进程间通信 1.进程间通信的目的 1.数据传输&#xff1a;一个进程需要把他的数据传给另外一个进程。 2.资源共享&…

路由器拨号失败解决方法

目录 一、遇到问题 二、测试 三、解决方法 &#xff08;一&#xff09;路由器先单插wan口设置 &#xff08;二&#xff09;mac地址替换 &#xff08;三&#xff09;更改路由器DNS 一、遇到问题 1 .在光猫使用桥接模式&#xff0c;由路由器进行拨号的时候&#xff0c;出现…

IP广播网络音频解码播放终端SV-7101SIP-7101 SIP播放解码器

IP广播网络音频解码播放终端SV-7101SIP-7101 SIP播放解码器 一、描述 SIP-7101是我司的一款壁挂式SIP网络播放终端&#xff0c;具有10/100M以太网接口&#xff0c;配置一路继电器输出和一路线路输出&#xff0c;可将内部音源输出到外接功放&#xff0c;可实现广播播放功能。S…

【LeetCode热题100】39. 组合总和(回溯)

一.题目要求 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序 返回这些组合。 candidates 中的 同一个 数字可以 无限制重复…

Nginx三大常用功能“反向代理,负载均衡,动静分离”

注意&#xff1a;以下案例在Windows系统计算机作为宿主机&#xff0c;Linux CentOS 作为虚拟机的环境中实现 一&#xff0c;Nginx配置实例-反向代理 1.反向代理 案例一 实现效果&#xff1a;使用nginx反向代理&#xff0c;访问 www.123.com 直接跳转到127.0.0.1:8080 准备工…