动态规划入门(数字三角形模型)

备战2024年蓝桥杯&算法学习 -- 每日一题
Python大学A组

        试题一:摘花生
        试题二:最低通行费用
        试题三:方格取数
        试题四:传纸条


试题一:摘花生

【题目描述】

        Hello Kitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。Hello Kitty只能向东或向南走,不能向西或向北走。问Hello Kitty最多能够摘到多少颗花生。

【输入格式】

        第一行是一个整数T,代表一共有多少组数据。

        接下来是T组数据。

        每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。

        每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M。

【输出格式】

        对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

【数据范围】

        1≤T≤100,
        1≤R,C≤100,
        0≤M≤1000

【输入样例】

2
2 2
1 1
3 4
2 3
2 3 4
1 6 5

【输出样例】

8
16

【解题思路】

        线性DP中的数字三角形模型,基础模型,状态转移方程f[i][j] = max(f[i-1][j] , f[i][j-1]) + w[i][j]。

【Python程序代码】

T = int(input())
for _ in range(T):r,c = map(int,input().split())a = [[0]*(c+5)]for i in range(r):a.append([0]+list(map(int,input().split())))f = [[0]*(c+5) for _ in range(r+5)]for i in range(1,r+1):for j in range(1,c+1):f[i][j] = max(f[i-1][j],f[i][j-1])+a[i][j]print(f[r][c])

试题二:最低通行费用

【题目描述】

        本题大意上给定一个 n×n的矩阵,让我们从左上角出发,最终走到右下角走过的方块数量的不能超过 2n−1个求所有路线中,经过的方块的总价值最少的路线。

【解题思路】

        和上一题相比改了一些条件,比如增加了一个不能超过2n-1个方块,考虑一下(1,1)到(n,n)的曼哈顿距离发现d = 2*n-2,同时题目要求的是求总价值最小,在2*n-2的最短路径上加上一个方块一定会大于等于这2*n-2个方块的价值,所以本题可以套上面题目的板子。

【Python程序代码】

n = int(input())
f = [[1e9]*(n+5) for _ in range(n+5)]
a = [[0]*(n+5)]
for i in range(n):a.append([0]+list(map(int,input().split())))
f[0][1]=f[1][0]=0
for i in range(1,n+1):for j in range(1,n+1):f[i][j] = min(f[i][j-1],f[i-1][j])+a[i][j]
print(f[n][n])

试题三:方格取数

【题目描述】

        设有N×N 的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 0。如下图所示(见样例):

         某人从图的左上角的 A 点出发,可以向下行走,也可以向右走,直到到达右下角的 B 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 0)。
        此人从 A 点到 B 点共走两次,试找出 2 条这样的路径,使得取得的数之和为最大。

【输入数据】

        输入的第一行为一个整数 N(表示 N×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 0 表示输入结束。

【输出数据】

        只需输出一个整数,表示 2 条路径上取得的最大的和。

【输入样例】

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

【输出样例】

67

【解题思路】

        需要考虑两条路径,如何考虑更好呢?如果说分别考虑的话如何判断是否重合呢且这两者相加也不一定是最大值,所以如果能够同时考虑两条路就好了,首先两条路的曼哈顿距离一定是相等的,所以我们可以考虑枚举每一条路径走的行的数量,列的数量可以用曼哈顿距离-列的数量,所以f[k][i][j]表示曼哈顿距离为k,且第一条路径走了i行k-i列,第二条路径走了j行k-j列,那么如何考虑状态转移呢?每一个f[k][i][j]可以由第一条路径往右走或者往下走过来,也即使f[k-1][i][j]和f[k-1][i-1][j],第二条路径也是往右或往下,f[k-1][i][j],f[k-1][i][j-1],那也就是四种状态:f[k-1][i-1][j-1]、f[k-1][i][j-1]、f[k-1][i-1][j]、f[k-1][i][j]。

【Python程序代码】

n = int(input())
w = [[0]*(n+5) for _ in range(n+5)]
a,b,c = map(int,input().split())
while not (a==0 and b==0 and c==0):w[a][b] += ca, b, c = map(int, input().split())
f = [[[0]*(n+5) for _ in range(n+5)] for i in range(2*n+5)]
for k in range(2,2*n+1):for i in range(1,n+1):for j in range(1,n+1):if k-i<=0 or k-j<=0 or k-i>n or k-j>n:continuev = w[i][k-i]t = f[k][i][j]if i!=j:v+=w[j][k-j]t = max(t, f[k-1][i-1][j-1])t = max(t, f[k-1][i][j-1])t = max(t, f[k-1][i-1][j])t = max(t, f[k-1][i][j])f[k][i][j] = t+v
print(f[2*n][n][n])

试题四:传纸条

【题目描述】

        小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排坐成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 (1,1),小轩坐在矩阵的右下角,坐标 (m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。 在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙,反之亦然。 还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 表示),可以用一个 0∼100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

【输入格式】

        第一行有 2 个用空格隔开的整数 m 和 n,表示学生矩阵有 m 行 n 列。

        接下来的 m 行是一个 m×n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度,每行的 n 个整数之间用空格隔开。

【输出格式】

        输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

 【数据范围】

        1≤n,m≤50

【输入样例】

3 3
0 3 9
2 8 5
5 7 0

【输出样例】

34

【解题思路】

        和上面一题类似,多了一个路径不可重复,考虑一下用上面的方法做一下得到两条路径,如果路径没有交叉和重叠点那么上面的就是答案。如果有交叉呢。

        对于有交叉的我们可以通过移动变到没有交叉但是个别点重合。对于重复,我们必然可以在两条路线中找到额外的一条或两条路线,使得新的路线不发生重合。如下图:

        由于原路线是最优解,则必然 wA=wB=0,否则最优解路径必然是经过A或B的,因此,我们可以通过微调其中的一条路线,使之不经过重合点 C,同时路线的总价值没有减少。所以可以直接用方格取数的方法。

【Python程序代码】

n,m = map(int,input().split())
a = [[0]*(m+5)]
for i in range(n):a.append([0]+list(map(int,input().split())))
f = [[[0]*(n+5) for i in range(n+5)] for j in range(n+m+5)]
for k in range(2,n+m+1):for i in range(1,n+1):for j in range(1,n+1):if k-i>m or k-i<=0 or k-j>m or k-j<=0:continuet = f[k][i][j]v = a[i][k-i]if i!=j:v+=a[j][k-j]t = max(t, f[k-1][i-1][j-1])t = max(t, f[k-1][i-1][j])t = max(t, f[k-1][i][j-1])t = max(t, f[k-1][i][j])f[k][i][j] = t+v
print(f[n+m][n][n])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/588115.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的“任务发布接收平台”的设计与实现(源码+数据库+文档+PPT)

基于SSM的“任务发布接收平台”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SSM 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 登录界面 前台界面 收藏界面 留言管理界面 任务管理界面 订…

操作系统—读者-写者问题及Peterson算法实现

文章目录 I.读者-写者问题1.读者-写者问题和分析2.读者—写者问题基本解法3.饥饿现象和解决方案总结 II.Peterson算法实现1.Peterson算法问题与分析(1).如何无锁访问临界区呢&#xff1f;(2).Peterson算法的基本逻辑(3).写对方/自己进程号的区别是&#xff1f; 2.只包含意向的解…

Android手势密码–设置和校验功能的实现代码

效果图如下&#xff0c;大家感觉不错请参考实现代码 具体代码如下所示&#xff1a; private void setGesturePassword() {toggleMore.setOnCheckedChangeListener(new CompoundButton.OnCheckedChangeListener() {Overridepublic void onCheckedChanged(CompoundButton button…

最新版两款不同版SEO超级外链工具PHP源码

可根据个人感觉喜好自行任意选择不同版本使用&#xff08;版V1或版V2&#xff09; 请将zip文件全部解压缩即可访问&#xff01; 源码全部开源&#xff0c;支持上传二级目录访问 已更新增加大量高质量外链&#xff08;若需要增加修改其他外链请打开txt文件&#xff09;修复优…

基于springboot+vue+Mysql的教学视频点播系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

史上最强 PyTorch 2.2 GPU 版最新安装教程

一 深度学习主机 1.1 配置 先附上电脑配置图&#xff0c;如下&#xff1a; 利用公司的办公电脑对配置进行升级改造完成。除了显卡和电源&#xff0c;其他硬件都是公司电脑原装。 1.2 显卡 有钱直接上 RTX4090&#xff0c;也不能复用公司的电脑&#xff0c;其他配置跟不上。…

知识图谱简介:探索知识的宇宙

知识图谱简介&#xff1a;探索知识的宇宙 一、引言 在这个由数据驱动的世界里&#xff0c;信息呈现出爆炸式的增长&#xff0c;人们对于管理和利用这些庞大数据量的需求也随之增长。知识图谱以其独特的方式&#xff0c;成为了整合和利用这些信息的有力工具。它不仅有助于组织杂…

补充知识

补充知识1 内存的本质是对数据的临时存储 内存与磁盘进行交互时&#xff0c; 最小单位是4kb叫做页框(内存)和页帧(磁盘) 也就是&#xff0c; 如果我们要将磁盘的内容加载到内存中&#xff0c; 可是文件大小只有1kb&#xff0c; 我们也要拿出4kb来存他&#xff0c; 多余的就直…

01 Python进阶:正则表达式

re.match函数 使用 Python 中的 re 模块时&#xff0c;可以通过 re.match() 函数来尝试从字符串的开头匹配一个模式。以下是一个简单的详解和举例&#xff1a; import re# 定义一个正则表达式模式 pattern r^[a-z] # 匹配开头的小写字母序列# 要匹配的字符串 text "h…

【QingHub】企业级应用开发管理

QingHub 企业级应用开发设计器是QingHub Studio的一个核心模块&#xff0c;它可以实现应用搭建、团队管理&#xff0c;共享开发&#xff0c;可以快速接入API接口&#xff0c;复杂功能可以通过自定义脚本快速实现业务逻辑。打通前端开发与后台业务逻辑一体化。通过可视化的方式&…

Linux网络编程二(TCP图解三次握手及四次挥手、TCP滑动窗口、MSS、TCP状态转换、多进程/多线程服务器实现)

文章目录 1、TCP三次握手(1) 第一次握手(2) 第二次握手(3) 第三次握手 2、TCP四次挥手(1) 一次挥手(2) 二次挥手(3) 三次挥手(4) 四次挥手 3、TCP滑动窗口4、TCP状态时序图5、多进程并发服务器6、多线程并发服务器 1、TCP三次握手 TCP三次握手(TCP three-way handshake)是TCP协…

如何做用户体验优化

本文是从用户体验优化角度谈用户体验&#xff0c;其实用户体验不是设计必须的步骤&#xff0c;而是分散在产品设计中的产品设计思想。 一、用户体验分类 用户体验是指用户在“使用”某个产品或服务过程中的全部感受&#xff0c;包括情感、信仰、喜好、认知印象、生理和心理反应…