基于机器学习的信用卡办卡意愿模型预测项目

基于机器学习的信用卡办卡意愿模型预测项目

在金融领域,了解客户的信用卡办卡意愿对于银行和金融机构至关重要。借助机器学习技术,我们可以根据客户的历史数据和行为模式预测其是否有办理信用卡的倾向。本项目通过Python中的机器学习库,构建了两个常用的分类模型:随机森林和逻辑回归,来预测客户的信用卡办卡意愿,通过使用Django框架通过构架可视化的方式分析数据。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据准备

首先,我们从MySQL数据库中获取处理后的客户数据。这些数据经过预处理和特征工程,包含了客户的各种特征信息,以及是否流失的标签。

# 数据库连接和数据获取
import pandas as pd
import pymysql
from data.mapper import host, user, password, database# 连接MySQL数据库
conn = pymysql.connect(host=host,user=user,password=password,database=database
)# 从MySQL数据库中读取处理后的数据
query = "SELECT * FROM processed_customer_data"
df = pd.read_sql(query, conn)# 关闭数据库连接
conn.close()

模型训练与评估

随机森林模型
随机森林是一种集成学习方法,通过构建多个决策树来进行分类或回归。我们使用随机森林模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 随机森林模型训练与评估
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix# 特征与标签分割
X = df.drop(columns=['Attrition_Flag'])
y = df['Attrition_Flag']# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)# 随机森林模型训练
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)# 模型预测
y_pred = rf_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

在这里插入图片描述

逻辑回归模型
逻辑回归是一种线性模型,常用于二分类问题。我们同样使用逻辑回归模型对客户的信用卡办卡意愿进行预测,并评估模型性能。

# 逻辑回归模型训练与评估
from sklearn.linear_model import LogisticRegression# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 逻辑回归模型训练
logreg_model = LogisticRegression()
logreg_model.fit(X_train, y_train)# 模型预测
y_pred = logreg_model.predict(X_test)# 模型评估
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

在这里插入图片描述

数据可视化

我们使用Django作为后端框架实现数据可视化,通过Pyecharts库创建多种图表,以更直观地展示数据分布和模型评估结果。

# Django视图函数中的数据可视化
from django.shortcuts import render
from pyecharts.charts import Bar, Pie, Line
from pyecharts import options as opts
from pyecharts.globals import CurrentConfig, ThemeTypefrom web.service.task_service import get_custormer_age, get_income_category, get_education_level, get_credit_limit, \get_months_inactive_12_mondef bar_chart(request):# 获取客户年龄分布数据x, y = get_custormer_age()line = (Line().add_xaxis([str(age) for age in x]).add_yaxis("Count", y).set_global_opts(title_opts=opts.TitleOpts(title="客户年龄分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户信用卡额度分布数据x1, y1 = get_credit_limit()line1 = (Line().add_xaxis([str(age) for age in x1]).add_yaxis("Count", y1).set_global_opts(title_opts=opts.TitleOpts(title="客户信用卡额度top10分布图"),xaxis_opts=opts.AxisOpts(name="Age"),yaxis_opts=opts.AxisOpts(name="Count"),))# 获取客户非活跃月数分布数据bar1 = Bar()x1, y1 = get_months_inactive_12_mon()bar1.add_xaxis(x1)bar1.add_yaxis("客户去年非活跃月数分布", y1)# 获取客户收入范围趋势数据bar = Bar()x, y = get_income_category()bar.add_xaxis(x)bar.add_yaxis("收入范围趋势图", y)# 获取客户教育水平分布数据pie = Pie()tuple = get_education_level()pie.add("教育水平分布图", tuple)# 获取图表的JavaScript代码line_js = line.render_embed()bar_js = bar.render_embed()pie_js = pie.render_embed()bar1_js = bar1.render_embed()line1_js = line1.render_embed()return render(request, 'charts/bar_chart.html', {'line': line_js, 'bar': bar_js, 'pie': pie_js, 'line1': line1_js, 'bar1': bar1_js})

在这里插入图片描述
在这里插入图片描述

总结

通过本项目,我们使用了机器学习模型预测了客户的信用卡办卡意愿,并通过Django实现了数据的可视化展示。这使得银行和金融机构能够更好地理解客户行为模式,并做出相应的业务决策。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于python,java,大数据,模型训练等。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/601132.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小马识途营销顾问谈如何做好网络口碑营销?

俗话说酒香不怕巷子深,酒香自然有一定的优势,但小马识途营销顾问认为,面对众多的产品,稀有性并不那么容易。所以赢得自己的品牌口碑,获取客户的信任度,才能让企业在市场竞争中长期立于不败之地。具体如何赢…

Echarts多曲线数值与Y周刻度不符合、Echarts tooltip文字设置左对齐、Echarts折线图背景区间色自定义

Echarts多曲线数值与Y周刻度不符合: 问题描述: 在展示多曲线图表的时候,发现图表曲线数值与Y轴刻度对应不上 问题解决方式: 查看下Echarts的配置option中的seriess属性(多曲线的时候这个属性应该是一个数组),然后查看数组中的每个…

STM32-寄存器映射

一、寄存器分类 寄存器是单片机内部一种特殊的内存,可以实现对单片机各个功能的控制 简单来说:寄存器就是单片机内部的控制机构 二、寄存器映射 1、寄存器是特殊的存储器,给寄存器地址命名的过程,就叫寄存器映射 寄存器描述…

欧冶云商绿色低碳供应链公共服务平台揭牌! 嘉兴印发 “链长+链主”制工作方案 | 产业互联网观察第171期

欧冶云商绿色低碳供应链公共服务平台正式揭牌! 4月3日下午,2024年绿色低碳供应链建设大会在中国宝武碳中和产业园召开,本次大会以“链聚绿色新动能,赋能新质生产力”为主题,大会举行了“绿色低碳供应链公共服务平台”启动仪式。 …

【御控物联】 JavaScript JSON结构转换(21):数组To对象——综合应用

文章目录 一、JSON结构转换是什么?二、术语解释三、案例之《JSON数组 To JSON对象》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么? JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换&#xff0…

rsync实时同步(上行同步)

目录 一、实现实时同步 1. 定期同步的不足 2. 实时同步的优点 3. Linux内核的inotify机制 4. 发起端配置rsyncinotify 4.1 修改rsync源服务器配置文件 4.2 调整inotify内核参数 4.3 安装inotify-tools 4.4 在另一个终端编写触发式同步脚本 4.5 验证 二、使用rsync实现…

CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问

文章目录 前言1. 使用Docker部署Apache Superset1.1 第一步安装docker 、docker compose1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透,实现公网访问3. 设置固定连接公网地址 前言 Superset是一款由中国知名科技公司开源的“现代化的…

PCA算法(Principal Component Analysis)揭秘

经典PCA算法 PCA算法的应用包括降维、有损数据压缩、特征抽取、数据可视化等。目前PCA算法有两个通用定义,能殊途同归,得到相同的结果。一方面,我们可以用正交投影来定义PCA,即将数据投影到更低维的线性子空间,也被称…

Datax,hbase与mysql数据相互同步

参考文章:datax mysql 和hbase的 相互导入 目录 0、软件版本说明 1、hbase数据同步至mysql 1.1、hbase数据 1.2、mysql数据 1.3、json脚本(hbase2mysql.json) 1.4、同步成功日志 2、mysql数据同步至hbase 1.1、hbase数据 1.2、mysql…

c++配置libtorch

这里写目录标题 LibTorch下载Vistual Studio环境配置C部署Libtorch出现问题、错误汇总检测环境是否配置成功 LibTorch下载 安装LibTorch非常简单,只需要从其官网选择相应的版本即可,具体页面如下图所示。 如果需要加载PyTorch训练的模型文件&#xff0…

上传应用程序到苹果应用商店的工具和要

引言 在今天的移动应用市场中,将应用程序上传到苹果应用商店(App Store)是许多开发者的首要任务之一。然而,不同操作系统下的开发者可能需要使用不同的工具和遵循不同的要求来完成这一任务。本文将介绍在 macOS、Windows 和 Linu…

求组合数(动态规划)

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 Cbamod(1097) 的值。 输入格式 第一行包含整数 n。 接下来 n 行,每行包含一组 a 和 b。 输出格式 共 n 行,每行输出一个询问的解。 数据范围 1≤n≤100001, 1…