Astra深度相机在Ubuntu18.04系统下实现相机标定

问题:

当使用Astra相机的启动的指令启动相机后,使用rviz查看相机所发布的rgb数据时,在终端会出现如下的提示信息:

Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found.

Camera calibration file /home/car/.ros/camera_info/depth_Astra_Orbbec.yaml not found.

可以看到提示的信息为相机的标定文件未能在 /home/car/.ros/camera_info/下找到,当我自己根据提示的路径去查找时,发现在/home/car/.ros/路径文件下,并没有camera_info这个文件夹,因此网上查询发现是因为自己没有对相机进行标定的缘故而导致。

下面就根据下面的步骤开始解决这个相机标定问题:

1、准备阶段

1)打印棋盘格,可在下面的这个网站链接中打印自己想要的尺寸的棋盘格,我设置的行列为7x10,大小为18mm的棋盘格

棋盘格网页链接:Camera Calibration Pattern Generator – calib.io

2)在Ubuntu18.04系统中安装标定功能包

sudo apt-get install ros-melodic-camera-calibration

2.1、标定彩色相机

1)启动相机节点

roslaunch astra_camera astra.launch

2)打开相机标定节点并指定话题(astra相机发布的彩色节点为:/camera/rgb/image_raw,可以使用 rostopic list 进行查看相机发布的节点名称

rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:=/camera/rgb/image_raw

其中的指令参考如下进行修改:

(1) size指的是:棋盘格内部的角点的行列数;

(注意:不是棋盘格的行列数,如我指定的行列为 7x10 ,则指令中的size就应就改为 6x9 ,因为这个对应的是棋盘格内部的角点的行列数。)

(2) square 是棋盘格每个格子的边长(可以自己用尺子量一下),我这里的是18mm,对应指令应输入0.018,因为指令的单位为米(m);

(3) image是图像话题名称,当Astra深度相机通常为/camera/rgb/image_raw,其他的相机可以通过 rostopic list 指令查看发布的相机节点名称。

3)在弹出的窗口相机视野中手持标定板,不断分别进行左右(X),上下(Y),远近(Size),倾斜(Skew)运动,尽量让这四个维度的进度条都为绿色。此过程要保证标定板上有彩色的条纹才为有效。这个过程中控制台也会打印出标定个数的日志。此过程也可以将标定板固定,然后移动相机。

(1)X:标定靶在摄像头视野中的左右移动;

(2)Y:标定靶在摄像头视野中的上下移动;

(3)Size:标定靶在摄像头视野中的前后移动;

(4)Skew:标定靶在摄像头视野中的倾斜转动

4)当右侧的CALIBRATE圆形按钮由灰色转为绿色时,说明数据采集完毕,此时点击CALIBRATE按钮,便开始读取之前保存的图片并执行标定计算,这里需要等待一会,因为计算需要时间。

5)有标定结果出来后,点击标定界面的SAVE按钮,再点commit按钮,标定结果保存在/tmp/calibrationdata.tar.gz这个压缩包中,到这里彩色相机的标定就结束了,关闭标定程序。

在终端中也会输出相应的标定结果。

6)保存后的标定文件为 /tmp/calibrationdata.tar.gz 的压缩包,将之解压,其中的 ost.yaml就是我们想要的标定结果。

打开ost.yaml,如下:

image_width: 640
image_height: 480
camera_name: narrow_stereo               #相机名称
camera_matrix:                                      #相机内参矩阵(相机坐标系->像素坐标系)
  rows: 3
  cols: 3
  data: [ 556.03872,    0.     ,  335.509  ,
            0.     ,  556.50706,  233.42121,
            0.     ,    0.     ,    1.     ]
distortion_model: plumb_bob
distortion_coefficients:                         #相机畸变系数
  rows: 1
  cols: 5
  data: [0.057411, -0.256237, 0.007304, 0.014521, 0.000000]
rectification_matrix:                             #矫正矩阵
  rows: 3
  cols: 3
  data: [ 1.,  0.,  0.,
          0.,  1.,  0.,
          0.,  0.,  1.]
projection_matrix:                               #投影矩阵(世界坐标系->图像坐标系)
  rows: 3
  cols: 4
  data: [ 547.36389,    0.     ,  345.97145,    0.     ,
            0.     ,  559.91687,  235.82042,    0.     ,
            0.     ,    0.     ,    1.     ,    0.     ]

【参数说明】

   camera_matrix:相机内参矩阵 (固有参数)

   distortion_coefficients:相机畸变系数 (固有参数)

   rectification_matrix:矫正矩阵(一般为单位阵 )

   projection_matrix:投影矩阵(世界坐标系到图像坐标系)

 7)然后将得到的标定文件 ost.yaml 进行名称的修改,此时的更改是根据刚刚报错的终端提文件名进行修改即可,刚刚终端提示的第一条是

Camera calibration file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml not found.

然后我们将刚刚彩色相机得到的标定文件 ost.yaml 的名称修改为 rgb_Astra_Orbbec.yaml ,并且还需要将该 yaml 文件中的 camera_name 也修改为 rgb_Astra_Orbbec ,不然后续运行的过程中会出现如下的提示:

[rgb_Astra_Orbbec] does not match name narrow_stereo in file /home/car/.ros/camera_info/rgb_Astra_Orbbec.yaml

因为标定文件中默认的名称为 narrow_stereo ,而我们已经将彩色相机的标定文件修改为了 ost.yaml 的名称修改为 rgb_Astra_Orbbec.yaml ,因此为了保证不出现错误提示,还需要将 yaml 中的 camera_name 也修改为 rgb_Astra_Orbbec 便可解决此问题。

8)将刚刚修改的 rgb_Astra_Orbbec.yaml 移动到 /home/car/.ros文件下的/camera_info/文件夹中,由于我的 /home/car/.ros文件下没有/camera_info/文件夹,因此需要创建并移入

cd /tmp/calibrationdata/mkdir -p ~/.ros/camera_infomv rgb_Astra_Orbbec.yaml ~/.ros/camera_info/ 

到此处对于 Astra 相机的彩色部分标定完成。接下来对深度相机(红外相机)部分进行标定操作

2.2、标定红外相机

 1)标定ir红外相机与标定rgb彩色相机相比,除了第一步的image参数不同,其他都一样。

由于其深度数据的成像即为红外相机的投影光斑分析得到的,ir红外的相机标定结果即是深度相机的标定结果。

运行红外相机标定节点:

# 启动相机
roslaunch astra_camera astra.launch# 运行红外标定
rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:=/camera/ir/image

目前测试,在Ubuntu18.04下melodic预览图像内容是黑色的,如下图。但是在rviz下却可以正常查看。

原因是由于默认的IR图像数据是16-bit的,如果想清晰的显示出来,我们需要将之归一化成一个数值范围为0-255范围的8-bit图片。而rviz已经帮我们做了这样的归一化操作。

根据这个思想,我们实现一个图像类型转换节点,即订阅 /camera/ir/image 话题,将得到的16-bit的图片转换成8-bit,然后输出到 /camera/ir/image_mono8,想要输出为 /camera/ir/image_mono8的节点需要使用如下的转换文件才可以,网盘下载链接如下:

image_transformer.zip官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘

将此文件保存到catkin_ws/src文件下,然后使用 catkin_make 指令对刚刚的 image_transformer进行编译操作,编译完成后再次执行如下操作即可实现对红外相机的标定工作。

也可以通过如下指令进行克隆指令

cd catkin_ws/src
git clone https://gitee.com/tangyang/image_transformer

注意,一定得按照我下面的启动顺序依次启动运行指令,不然会出错

# 1)启动相机
roslaunch astra_camera astra.launch# 2)启动image_transformer转换节点
cd catkin_ws
source ./devel/setup.bash
rosrun image_transformer gray_image_transformer# 3)运行红外标定
rosrun camera_calibration cameracalibrator.py --size 6x9 --square 0.018 image:= /camera/ir/image_mono8

运行完 rosrun image_transformer gray_image_transformer 指令后,使用 rostopic list 指令便可以查询到转换后的8-bit节点,如下图所示:

运行红外标定指令后的图像如下:

然后便可以在标定程序中查看到如彩色相机标定的类似画面,其中标定的步骤和彩色相机部分一致,并且此处需注意,标定红外相机标定文件保存路径也是在/tmp/下,并且名称也是calibrationdata.tar.gz 的文件,需提前将前面的彩色相机的 calibrationdata.gz 的文件保存到其他地方,不然在红外相机标定文件保存时会将其覆盖。

此外,这里所得到的红外相机的标定文件打开也是和彩色相机相同的命名方式,将 ost.yaml 的名称修改为 depth_Astra_Orbbec.yaml ,将 yaml 中的 camera_name 也修改为 depth_Astra_Orbbec,然后保存修改文件,并使用如下指令将 depth_Astra_Orbbec.yaml 移动到 /home/car/.ros/camera_info/ 路径下

cd /tmp/calibrationdata/mv depth_Astra_Orbbec.yaml ~/.ros/camera_info/ 

至此,Astra 深度相机的整体标定已完成。

参考博客

奥比中光Astra相机(一)驱动安装及ROS标定 - 哔哩哔哩

使用标定文件出错:does not match name narrow_stereo in file /home/michael/.ros/camera_info/head_camera.yaml._[head_camera] does not match name narrow_stereo in-CSDN博客

Astra plus 深度相机校准标定-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/601820.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS实战开发-如何实现跨应用数据共享实例。

介绍 本示例实现了一个跨应用数据共享实例,分为联系人(数据提供方)和联系人助手(数据使用方)两部分:联系人支持联系人数据的增、删、改、查等功能;联系人助手支持同步联系人数据,当…

Dubbo 序列化

Dubbo 序列化 1、什么是序列化和反序列化 序列化(serialization)在计算机科学的资料处理中,是指将数据结构或对象状态转换成可取用格式(例如存成文件,存于缓冲,或经由网络中发送),…

HiveSQL之lateral view

lateral view是hiveQL中的一个高级功能,用于和表生成函数一起,来处理嵌套数组和结构的数据,特别是在处理复杂的数据结构如JSON或数组内嵌套数组时特别有用。它允许用户在每一行上应用TGF(表生成函数),将生成…

蓝桥杯刷题--RDay5

清理水域--枚举 8.清理水域 - 蓝桥云课 (lanqiao.cn)https://www.lanqiao.cn/problems/2413/learning/?page1&first_category_id1&second_category_id3&tags2023 小蓝有一个n m大小的矩形水域,小蓝将这个水域划分为n行m列,行数从1…

云计算(五)—— OpenStack基础环境配置与API使用

OpenStack基础环境配置与API使用 项目实训一 【实训题目】 使用cURL命令获取实例列表 【实训目的】 理解OpenStack的身份认证和API请求流程。 【实训准备】 (1)复习OpenStack的认证与API请求流程的相关内容。 (2)熟悉cURL…

CSS层叠样式表学习(基础选择器)

(大家好,今天我们将继续来学习CSS(2)的相关知识,大家可以在评论区进行互动答疑哦~加油!💕) 目录 二、CSS基础选择器 2.1 CSS选择器的作用 2.2 选择器分类 2.3 标签选择器 2.…

Java前置一些知识

文章目录 搭建Java环境安装path环境变量Java技术体系 Java执行原理JDK组成跨平台 IDEA管理Java程序 搭建Java环境 安装 oralce官网下载 JDK17 Windows 傻瓜式的点下一步就行,注意:安装目录不要有空格、中文 java 执行工具 javac 编译工具 类名和文件…

如何监控特权帐户,保护敏感数据

IT基础设施的增长导致员工可以访问的凭据和资源数量急剧增加。每个组织都存储关键信息,这些信息构成了做出关键业务决策的基石。与特权用户共享这些数据可以授予他们访问普通员工没有的凭据的权限。如果特权帐户凭证落入不法分子之手,它们可能被滥用&…

刷题之动态规划-子序列

前言 大家好,我是jiantaoyab,开始刷动态规划的子序列类型相关的题目,子序列元素的相对位置和原序列的相对位置是一样的 动态规划5个步骤 状态表示 :dp数组中每一个下标对应值的含义是什么>dp[i]表示什么状态转移方程&#xf…

RAG基础知识及应用

简单介绍下RAG的基础知识和RAG开源应用 “茴香豆" 一. RAG 基础知识 1. RAG工作原理 RAG是将向量数据库和大模型问答能力的有效结合,从而达到让大模型的知识能力增加的目的。首先将知识源存储在向量数据库中,当提出问题时,去向量数据库…

Redis中的集群(一)

集群 概述 Redis集群是Redis提供的分布式数据库方案,集群通过分片(sharding)来进行数据共享,并提供复制和故障转移功能 节点 一个Redis集群通常由多个节点(node)组成,在刚开始的时候,每个节点都是相互独立的,它们都…

电脑开机启动项设置

电脑开机启动项设置 一、Windows 系统: 1、Windows 系统,可以通过【系统配置实用程序】来设置开机启动项: 1)、按【WinR】组合键,打开【运行】对话框。 2)、输入【msconfig】,点击【确定】或…