Python-OpenCV中的图像处理-图像阀值

Python-OpenCV中的图像处理-图像阀值

  • 图像阈值
    • 单阈值
    • 自适应阈值
    • Otsu's二值化

图像阈值

单阈值

与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。 OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:

  • cv2.THRESH_BINARY
  • cv2.THRESH_BINARY_INV
  • cv2.THRESH_TRUNC
  • cv2.THRESH_TOZERO
  • cv2.THRESH_TOZERO_INV
import numpy as np
import cv2
from matplotlib import pyplot as plt# 单阈值
img = cv2.imread('./resource/opencv/image/colorscale_bone.jpg', cv2.IMREAD_GRAYSCALE)ret,thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['original', 'binary', 'binary-inv', 'trunc', 'tozero', 'tozero-inv']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'),plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()

在这里插入图片描述

自适应阈值

在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。这种方法需要我们指定三个参数,返回值只有一个。

  • Adaptive Method- 指定计算阈值的方法。
    – cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平
    均值
    – cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域
    的加权和,权重为一个高斯窗口。
  • Block Size - 邻域大小(用来计算阈值的区域大小)。
  • C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常
    数。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 自适应阀值
img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_GRAYSCALE)# 中值滤波
img = cv2.medianBlur(img, 5)(ret, th1) = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)# 自适应阀值 11 为block size, 2为C值
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)titles = ['original image', 'global thresholding(v=127)', 'Adaptive mean thresholding', 'adaptive gaussian thresholding']
images =[img, th1, th2, th3]for i in range(4):plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

Otsu’s二值化

在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试。如果是一副双峰图像(简单来说双峰图像是指图像直方图中存在两个峰)呢?我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一副双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数( flag): cv2.THRESH_OTSU。这时要把阈值设为 0。然后算法会找到最
优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的
retVal 值与设定的阈值相等。下面的例子中,输入图像是一副带有噪声的图像。第一种方法,我们设127 为全局阈值。第二种方法,我们直接使用 Otsu 二值化。第三种方法,我们首先使用一个 5x5 的高斯核除去噪音,然后再使用 Otsu 二值化。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/Template_Matching_Correl_Result_2.jpg', cv2.IMREAD_GRAYSCALE)(ret1,th1) = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
(ret2,th2) = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# (5,5)为高斯核的大小,0为标准差
blur = cv2.GaussianBlur(img, (5,5), 0) # 高斯滤波# 阀值一定要设为0
(ret3, th3) = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)images = [img, 0, th1,img, 0, th2,img, 0, th3]
titles = ['original noisy image', 'histogram', 'global thresholding(v=127)','original noisy image','histogram',"otsu's thresholding",'gaussian giltered image','histogram',"otus's thresholding"]for i in range(3):plt.subplot(3,3,i*3+1), plt.imshow(images[i*3], 'gray')plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)plt.title(titles[i*3+1]),plt.xticks([]),plt.yticks([])plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')plt.title(titles[i*3+2]),plt.xticks([]),plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/61027.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity之ShaderGraph 节点介绍 Procedural节点

程序化 噪声Gradient Noise(渐变或柏林噪声)Simple Noise(简单噪声)Voronoi(Voronoi 噪声) 形状Ellipse(椭圆形)Polygon(正多边形)Rectangle(矩形…

Oracle连接数据库提示 ORA-12638:身份证明检索失败

ORA-12638 是一个 Oracle 数据库的错误代码,它表示身份验证(认证)检索失败。这通常与数据库连接相关,可能由于以下几个原因之一引起: 错误的用户名或密码: 提供的数据库用户名或密码不正确,导致…

在家查阅下载AACR(美国癌症研究学会)数据库文献

AACR(美国癌症研究学会)简介: 美国癌症研究学会American Association for Cancer Research创建于1907年,是世界上成立最早、规模最大的致力于全面、创新和高水准癌症研究的科学组织。其出版物包括7种正式出版的期刊: …

Client not connected, current status:STARTING

今天项目集成Seata时遇到一个奇怪的异常,在此记录一下。 Linux环境安装Seata,使用Nacos作为配置中心、注册中心; Linux已开放端口:8848、7091、8091 在我Windows环境下可以看到Nacos运行正常,Seata运行也正常&#…

[保研/考研机试] 括号匹配问题 C++实现

题目描述: 在某个字符串(长度不超过100)中有左括号、右括号和大小写字母;规定(与常见的算数式子一样)任何一个左括号都从内到外与在它右边且距离最近的右括号匹配。写一个程序,找到无法匹配的左括号和右括号,输出原来的字符串&am…

国产芯力特SIT1024QHG四通道本地互联网络(LIN)收发器,可替代TJA1024HG

SIT1024Q 是一款四通道本地互联网络(LIN)物理层收发器,符合 LIN 2.0、LIN 2.1、LIN 2.2、 LIN 2.2A 、 ISO 17987-4:2016 (12V) 和 SAE J2602 标准。主要适用于使用 1kbps 至 20kbps 传输速 率的车载网络。 SIT1024Q 通过 TXDx 引…

idea使用protobuf

本文参考:https://blog.csdn.net/m0_37695902/article/details/129438549 再次感谢分享 什么是 protobuf ? Protocal Buffers(简称protobuf)是谷歌的一项技术,用于结构化的数据序列化、反序列化。 由于protobuf是跨语言的,所以用…

effective c++学习笔记(前五章)

目录 一 让自己习惯C01 视C为一个语言联邦02 尽量以const,enums,inline替换#define**指针常量--指针类型的常量(int * const p)****常量指针—指向“常量”的指针(const int * p, int const * p)**类静态常…

MyBatis学习——第六篇(mybatisPlus)

1:什么是mybatisPlus 1.1:mybatisPlus介绍 mybatisPlus官网:MyBatis-Plus mybatisPlus是一个mybatis的增强工具,只做增强,不做改变。目的是为了简化开发代码,提高效率而生的。 1.2:mybatisPl…

联发科:2023年7月合并营收317.63亿元新台币,环比下降 16.8%

据联发科公布,2023年7月合并营收为317.63亿元新台币(折合人民币约72.1亿元),环比下降16.8%,同比下降22.3%。而联发科前七个月的累计合并营收为2255.5亿元新台币(折合人民币约512亿元)&#xff0…

【论文阅读】EULER:通过可扩展时间链接预测检测网络横向移动(NDSS-2022)

作者:乔治华盛顿大学-Isaiah J. King、H. Howie Huang 引用:King I J, Huang H H. Euler: Detecting Network Lateral Movement via Scalable Temporal Graph Link Prediction [C]. Proceedings 2022 Network and Distributed System Security Symposium…

Android Studio实现简单ListView

效果图 MainActivity package com.example.listviewtest;import androidx.appcompat.app.AppCompatActivity;import android.os.Bundle; import android.widget.ListView;import com.example.listviewtest.adapter.PartAdapter; import com.example.listviewtest.bean.PartB…