A Learning-Based Approach for IP Geolocation(2010年)

下载地址:Towards IP geolocation using delay and topology measurements | Proceedings of the 6th ACM SIGCOMM conference on Internet measurement

被引次数:185

Eriksson B, Barford P, Sommers J, et al. A learning-based approach for IP geolocation[C]//Passive and Active Measurement: 11th International Conference, PAM 2010, Zurich, Switzerland, April 7-9, 2010. Proceedings 11. Springer Berlin Heidelberg, 2010: 171-180.

Abstract

定位IP主机地理位置的能力对于在线广告和网络攻击诊断等应用程序是非常吸引力的。虽然先前的方法可以准确地识别主机在互联网的某些区域的位置,但当它们所基于的延迟或拓扑测量有限时,它们会产生错误的结果。我们工作的假设是,可以通过创建一个能够适应不同类型的地理位置信息的灵活的分析框架来提高IP地理位置的准确性。

在本文中,我们描述了一个新的IP地理定位框架,它简化为一个机器学习分类问题。我们的方法考虑了从一组已知监视器到目标的轻量级测量,然后根据从训练集中学习到的概率密度的最可能的地理区域对目标的位置进行分类。在本研究中,我们采用了一个朴素贝叶斯框架,该框架的计算复杂度较低,并且易于添加额外的环境信息,以增强分类过程。

为了证明我们的方法的可行性和准确性,我们在超过16,000个路由器上测试了IP地理定位,并给出了来自78个已知地理位置的监视器的ping测量值。

我们的结果表明,我们的方法的简单应用提高了我们数据集中识别的对96%以上的节点的地理定位精度,与之前基于约束的地理位置相比,平均精度接近真实地理位置70英里。这些结果突出了我们的方法的前景,并表明了未来分类器的扩展如何导致地理定位精度的进一步提高。

1 Introduction

有很多方法可以考虑互联网的结构和拓扑特征。对广告商、应用程序开发人员、网络运营商和网络安全分析师有重大影响的一种方法是识别互联网设备的地理位置(如路由器或结束的主机)。地理位置可以指一个设备的精确的纬度/经度坐标,或一个更粗粒度的位置,如在一个邮政编码、城市、县或国家内。

在找到一个给定的互联网设备的地理位置方面有许多挑战。最明显的是,没有一个标准的协议可以提供全球范围内任何设备的位置(尽管DNS条目可以包含一个位置记录)。此外,互联网设备通常不具备位置识别能力(例如,GPS,尽管这种情况将来可能会改变),即使有,一些人也会认为这些信息是私人的。先前的方法集中于根据互联网设备的地理位置来识别其相对于已知位置的地标的主动测量的位置。虽然这些方法已被证明能够在某些地区产生相对准确的地理估计,但由于各种原因,仍然不准确。其中最主要的事实是,全球各地的特定测量数据的密度不一致。

我们工作的目标是广泛地提高IP地理定位的准确性。我们的假设是,由不完善的测量、稀疏的测量可用性和不规则的互联网路径引起的大估计误差可以通过扩展IP地理位置中考虑的信息范围来解决。我们开发来测试这一假设的估计框架是将IP地理定位转换为一个基于机器学习的分类问题。这种可扩展的方法可以将来自多个数据集的信息融合起来,这样,从一个测量中信息内容较低的区域就可以用来自其他测量的更好的信息内容进行补偿。

为了充实这个框架,为了检验我们的假设,我们必须同时选择一种分类方法和一组可以用来估计IP地理位置的测量值。我们开发了一种朴素贝叶斯估计方法,该方法基于与该IP目标相关联的一组测量值,将一个给定的IP目标分配给一个地理分区。考虑到对IP目标的大量测量,概率似然估计简化为朴素贝叶斯方法。该框架中考虑的网络测量数据包括从一组地标到IP目标的延迟和跳数计数。我们还在框架中包括了人口密度,作为一个非网络测量的演示,可以帮助改进估计。选择这种分类器/测量组合是为了证明这种新方法的潜力,但并不意味着是明确的或全面的。

为了测试和评估我们基于学习的方法的这个初始实例的能力,我们考虑了在美国大陆的县级别上的地理划分。(在我们的框架中,根据邮政编码或城市街区的顺序进行更细粒度的划分当然是可行的,但由于测试和评估数据的可用性,我们选择了县级划分。)

虽然相当多的互联网拓扑结构位于美国大陆以外,但对该数据集的初步验证将激发未来对位于美国以外的终端主机的工作。我们在互联网上确定了114,815个空间不同节点从行星实验室节点的网格跟踪探测的目标集,来自iPlane [1]项目的补充数据,以及仔细的别名解析。对于这些目标节点的地理位置的基本真相,我们使用Maxmind数据库[2]作为我们的方法的验证集。在我们的测量中确定的114,815个IP目标节点中,有16,874个在Maxmind数据库中被确定为在美国境内,具有已知的城市位置。由于它作为一种商业产品的使用,Maxmind数据库的确切基础方法是不可用的,尽管已知已经广泛使用了用户调查地理位置信息。(由于它依赖于用户生成的数据,更新Maxmind数据库需要大量的用户调查,而这是我们基于学习的方法所不需要的。)

1. Madhyastha, H., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: An Information Plane for Distributed Services. In: USENIX OSDI 2006 (November 2006)

2. Maxmind geolocation database, http://www.maxmind.com

对于这组16K个目标节点,我们从位于美国的78个PlanetLab节点中收集了跳数计数和延迟测量值,这是我们评估的起点。

我们选择了目标节点的一个子集来训练我们的分类器,训练集节点具有对监视器的已知测量值和已知的地理位置。(在本文中,我们认为IP地址和节点是等价的,因为即使路由器上的别名解析不完善,也不应该影响我们的经验结果。)

对于其余的节点,我们将基于学习的方法和基于约束的地理位置(CBG)[3](使用ping度量的当前最先进的地理位置算法)的地理位置估计与使用Maxmind数据库发现的位置进行比较。我们发现,对于96%的节点,我们的估计器能够提供比CBG更好的位置估计值,并且平均提供的估计值距离真实位置更近70英里。我们相信,这些结果为未来发展基于学习的IP地理定位方法提供了一个令人信服的理由。

3. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of internet hosts. IEEE/ACM Transactions on Networking (December 2006)

2 Learning-Based IP Geolocation

给定一个目标IP地址,我们能确定目标IP的地理位置吗?考虑一个目标IP地址,从一组已知地理位置的监视器到这个目标IP地址。为了本工作,测量集M(= {m_{1}m_{2},...,m_{M} })是来自监视器集的延迟和跳计数值的集合。没有一般性,现在考虑一组可能的县在美国大陆(C),这样的目标位于某个县c\in C,这将使根本的问题更改为,给定测量集M,我们能估计出目标IP位于哪个县c\in C吗?最好的分类器将选择目标最可能位于的县(\hat{c}),即\hat{c}=_{c\in C}^{argmax}\textrm{P(c|M)}。利用贝叶斯定理[4](P(A|B)=\frac{P(B|A)P(A)}{P(B)}),因此我们可以将分类器重申为

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/615518.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebService反向代理的配置和

WebService反向代理的配置和 家都知道,联网上有很多被墙了的网站,虽然这是让人很伤心的一件事情,但还好咱们有办法绕过这个限制,那就是使用IP代理。今天我就来给大家讲讲如何配置和使用WebService反向代理。 什么是WebService反向…

二叉树遍历算法和应用

二叉树是指度为 2 的树。它是一种最简单却又最重要的树,在计算机领域中有这广泛的应用。 二叉树的递归定义如下:二叉树是一棵空树,或者一棵由一个根节点和两棵互不相交的分别称为根节点的左子树和右子树所组成的非空树,左子树和右…

DC-3渗透测试复现

DC-3渗透测试复现 目的: 获取最高权限以及5个flag 过程: 信息打点-sql注入-反弹shell- pkexec提权(CVE-2021-4034) 环境: 攻击机:kali(192.168.85.136) 靶机:DC_3(192.168.85.133) 复现…

SpringBoot中使用Jackson序列化返回

SpringBoot中使用Jackson序列化返回 在Spring Boot应用中,使用Jackson库来处理JSON的序列化和反序列化是一种常见的做法。Jackson是一个高效的JSON处理器,广泛用于Java环境中,尤其是在与Spring框架集成时。本文将详细介绍如何在Spring Boot中…

MATLAB数据类型和运算符+矩阵创建

个人主页:学习前端的小z 个人专栏:HTML5和CSS3悦读 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结,欢迎大家在评论区交流讨论! 文章目录 ✍一、MATLAB数据类型和运算符💎1 MATLAB的数据类型🌹…

LeetCode 24. 两两交换链表中的节点

解题思路 这道题用画图的方法是比较好的。 相关代码 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.…

C语言输出不同颜色的字体

本文章在Linux进行演示!!! 使用C语言输出不同颜色字体和背景 格式: printf("\033[字体背景颜色;字体颜色m字符串\033[0m"); 上边的 \033 也可以用 \e 来代替。 字体颜色与字符的对应关系 字符颜色30黑色31红…

经验分享:云知识库才是智能时代企业的最优选择

我知道你们可能会有点困惑,云知识库是什么?为什么它会是智能时代企业的最优选择?不要紧张,坐稳了,我带你们慢慢了解这个鲜为人知的神器。 首先,让我们说说什么是"云知识库"。云知识库就像一个在线…

uniapp APP真机调试接口请求不到服务器解决方法

项目场景: 在使用Hbuilder开发uniapp的过程中,出现了两个在 Chrome 调试中正常,但打包后异常的问题,特此记录。 问题描述 在 H5 端请求接口正常请求。 App 端 请求接口,提示 "{"errMsg":"reque…

常见的垃圾回收器(下)

文章目录 G1ShenandoahZGC 常见垃圾回收期(上) G1 参数1: -XX:UseG1GC 打开G1的开关,JDK9之后默认不需要打开 参数2:-XX:MaxGCPauseMillis毫秒值 最大暂停的时间 回收年代和算法 ● 年轻代老年代 ● 复制算法 优点…

常见的垃圾回收算法

文章目录 1. 标记清除算法2. 复制算法3. 标记整理算法4. 分代垃圾回收算法 1. 标记清除算法 核心思想: 标记阶段,将所有存活的对象进行标记。Java中使用可达性分析算法,从GC Root开始通过引用链遍历出所有存活对象。清除阶段,从…

如何使用 ArcGIS Pro 制作热力图

热力图是一种用颜色表示数据密度的地图,通常用来显示空间分布数据的热度或密度,我们可以通过 ArcGIS Pro 来制作热力图,这里为大家介绍一下制作的方法,希望能对你有所帮助。 数据来源 教程所使用的数据是从水经微图中下载的POI数…