数字IC/FPGA——亚稳态及跨时钟域

  • 什么是亚稳态
  • 亚稳态会造成什么
  • 平均故障间隔时间
  • 如何解决亚稳态
  • 同步时钟和异步时钟
  • 单bit电平信号如何跨时钟域
  • 单bit脉冲信号如何跨时钟域
  • 多bit信号如何跨时钟域

目录

    • 一、亚稳态
      • 1.基本概念
      • 2.危害
      • 3.平均故障时间
      • 4.解决亚稳态的方法
    • 二、跨时钟域
      • 1.同步电路和异步电路
        • (1)同步电路
        • (2)异步电路
      • 2.单bit跨时钟域
        • (1)电平信号
        • (2)脉冲信号
      • 3.多bit跨时钟域
        • (1)格雷码
        • (2)DMUX
        • (3)异步FIFO

一、亚稳态

1.基本概念

亚稳态是指触发器无法在某个规定时间内达到一个确定的状态,当一个触发器进入亚稳态时,既无法预测该单元的输出电平,也无法预测何时****输出才能稳定在某个正确的电平上。在这个期间,触发器输出一些中间级电平,或者可能处于振荡状态,并且这种无用的输出电平可以沿信号通道上的各个触发器级联式传播下去

在这里插入图片描述

从CMOS层级分析亚稳态产生的原因,下图是一个CMOS反相器的传输特性曲线:

在这里插入图片描述

电子技术——CMOS反相器-CSDN博客

其中BC段为MOS的放大器区,在BC端具有无限大的增益。将输入电压和输出电压相等的点即Vm=VDD/2称作是反相器的阈值电压,电平在这个点附近迅速完成了电平切换。

当输入电压处于0—V_IL时,反相器认为输入为低电平;当输入电压处于V_IH—VDD时,反相器认为输入为高电平。当输入电压处于V_IL—VIH之间时,反相器有可能会将其判断为低电平或高电平中的任意一种。

当输入数据不能够满足寄存器的建立时间和保持时间要求时,采样到的电压就可能会处于上述的V_IL和V_IH之间的区间,就会导致输出处于亚稳态。

2.危害

由于产生亚稳态后,寄存器Q端输出在稳定下来之前可能是毛刺、振荡、固定的某一电压值。在信号传输中产生亚稳态就会导致与其相连其他数字部件将其作出不同的判断,有的判断到“1”有的判断到“0”,有的也进入了亚稳态,数字部件就会逻辑混乱

3.平均故障时间

平均故障时间指的是系统两次发生故障之间系统平均正常工作的时间,他是系统发生故障概率的倒数。用MTBF表示。平均故障间隔时间越长,系统越可靠。

M T B F = e t M E T / C 2 C 1 ⋅ f C L K ⋅ f D A T A MTBF=\frac{e^{t_{MET}}/C_2}{C_1\cdot f_{CLK}\cdot f_{DATA}} MTBF=C1fCLKfDATAetMET/C2

t_MET代表寄存器从时钟上升沿触发后的时序余量时间;

C1、C2与器件有关的参数,器件的建立时间和保持时间越小,C2越小

f_DATA是数据的变化频率

f_CLK是接收时钟域的时钟频率

4.解决亚稳态的方法

亚稳态不能消除,只能降低其发生的概率。

我们从MTBF入手:当数据的变化频率和接收时钟域的时钟频率越低,C2越小,MTBF越大。

因此可有以下几种方法:

(1)降低时钟频率;

(2)采用反应更快的触发器;

(3)跨时钟域处理。

二、跨时钟域

1.同步电路和异步电路

(1)同步电路

同步电路是指电路中所有由时钟控制的单元,都由一个统一的全局时钟控制。

优点

①时序收敛;

②可以避免噪声和毛刺的影响(采用的是边沿触发器)

缺点

时钟偏移的存在会导致时钟树综合时加入缓冲单元,以保证时钟偏移能够维持在一个较小的水平,这样使得电路的面积和功耗增加

(2)异步电路

电路中不是由一个统一的时钟控制,数据传输可以发生在任何时候。

优点:

①由于是异步时钟,无需考虑时钟偏移问题;

②相同条件下比同步电路功耗低;

缺点:

①设计复杂,缺少EDA工具支持;

②很大概率存在竞争与冒险;

③一般无法对异步电路进行静态时序分析。

2.单bit跨时钟域

(1)电平信号

电平信号是指长时间稳定在高电平或低电平的一种信号。因此对其进行跨时钟域处理时,可以直接在接收时钟域对数据进行打拍处理即可,一般为经过两级同步器。

跨时钟域之全面解析_cdc path-CSDN博客

在这里插入图片描述

需要注意的是,经过两级同步器并不代表数据采样一定正确,只是可以降低亚稳态发生的概率。

(1)如果亚稳态维持的时间不止一个周期,在下一个时钟上升沿没有稳定,那么第二级的FF也会进入亚稳态,这种情况的概率是1/MTBF

(2)第一级亚稳态在下一个时钟上升沿稳定,但是被是识别为0,那么第二级的FF输出bq2_dat就是0,说明信号跨时钟采样失败。但是这种情况不会造成亚稳态的传播,也就是不会影响后面的设计。针对这种情况,一般会改变设计,不会让快时钟域的单周期脉冲,跨时钟到慢的时钟内采样。

为什么跨时钟信号必须是寄存器的输出,中间不能有组合逻辑?

参考下面这篇文章,写的非常好。

跨时钟域之全面解析_cdc path-CSDN博客

在这里插入图片描述

观察图中我们可以发现,当采用组合逻辑后,会出现adat在一个周期内出现了多次跳变,也就是说数据变化的频率变大了,而参考MTBF的公式,当数据频率变大时会导致平均故障间隔时间变小,因此会提高亚稳态发生的概率。

(2)脉冲信号

脉冲信号是指在源时钟下只保持一个时钟周期的信号,为保持其信号特性,跨时钟后该信号需要在目的时钟域下也只保持一个时钟周期。需要考虑原时钟和目的时钟的频率关系,并在设计中采取不同的方式。

①慢时钟域到快时钟域

直接进行采样可能导致目的时钟对脉冲的重复采样。

将采样信号在目的时钟域打两拍稳定数据,再根据额外打一拍之后做边沿采样(与非),产生脉冲。

在这里插入图片描述

在这里插入图片描述

②快时钟域到慢时钟域

这种情况下可能会发生漏采,因此需要先对脉冲信号进行展宽,在源时钟域下根据脉冲信号生成电平信号,检测脉冲信号,将电平信号翻转一次。之后进行两级同步,再提取信号边沿(异或)。

在这里插入图片描述

3.多bit跨时钟域

(1)格雷码

格雷码相邻两个数之间只有1bit变化,只要其是连续变化,就可以通过两级同步器进行跨时钟域。

在这里插入图片描述

(2)DMUX

对于数值非连续变化数据保持多拍的多bit信号,可以通过DMUX同步器的方式来进行跨时钟域。

其实现方式为:

对数据有效信号通过两级同步器进行跨时钟域,之后在目的时钟域提取边沿信号,然后再在目的时钟域采样数据信号,因为此时数据信号已经稳定。但是这是对于原时钟域慢目的时钟域快的情况,当原时钟域快目的时钟域慢时需要对有效信号进行展宽,然后跨时钟域。

在这里插入图片描述

在这里插入图片描述

通常同步器模块的输入和多周期路径规划数据路径需要使用set_false_path命令。因为同步器的输入会出现时序问题。

(3)异步FIFO

对于数值非连续变化并且数据保持一个时钟周期的情况,应使用异步FIFO进行跨时钟域处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/615723.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打造eBay、亚马逊爆款新路径:自养号测评技巧全解析

对于ebay和亚马逊的商家而言,如何精心打造爆款产品,无疑是他们普遍关心的核心议题。然而,有时您可能会感到困惑,为何总是难以选出真正的爆款? 首先,要清晰地认识到选品的重要性。选品,作为店铺的…

代码随想录:栈与队列4-6

20.有效的括号 题目 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号都有一…

Navicat Premium 16 for Mac/Win:数据库管理的全能之选

在数字化时代,数据库管理已成为各行各业不可或缺的一环。而Navicat Premium 16作为一款功能强大的数据库管理软件,无疑为数据库管理员和开发者提供了高效、便捷的解决方案。 Navicat Premium 16支持多种主流数据库系统,无论是MySQL、Postgre…

SSL证书添加与ICP备案,对于SpringBoot的要求

配置了SSL证书之后,在SpringBoot的resources文件夹里的application.properties会添加以下代码: server.port443 不需要添加server.address。不然会报错。 https类型的请求默认在Postman里面不可请求。 经过SSL证书处理的网页,链接中使默认…

初识SpringMVC(SpringMVC学习笔记一)

1 、还是熟悉的配方&#xff0c;先创建一个父Maven项目&#xff08;忘记怎么创建项目了就去前面翻笔记&#xff09;&#xff0c;导入通用的配置依赖 <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instan…

- 工程实践 -《分布式系统可用性保证方法和实践》

本文属于专栏《构建工业级QPS百万级服务》系列简介-CSDN博客 目录 1、什么是可用性 2、保障可用性的方法 2.1、可用性保障的前置手段 2.1.1、灰度验证 2.1.2、小流量验证 2.1.3、上线流程 2.1.4、前置手段总结 2.2、可用性保障的后置手段 2.2.1、问题发现 2.2.1…

Unet++(pytorch实现)

Unet++网络 Dense connection Unet++继承了Unet的结构,同时又借鉴了DenseNet的稠密连接方式(图1中各种分支)。 作者通过各层之间的稠密连接,互相连接起来,就像Denset那样,前前后后每一个模块互相作用,每一个模块都能看到彼此,那对彼此互相熟悉,分割效果自然就会变好…

基于Python的豆瓣电影、豆瓣电影评分可视化、豆瓣电影评分预测系统

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

对给定向量旋转

对给定向量旋转 顺时针&#xff1a; 逆时针&#xff1a; 源码&#xff1a; QPointF rotateVector(const QPointF& dir, double angle, bool flag){double rad (angle * M_PI) / 180;QPointF res;if (flag){float x static_cast<float>(dir.x() * std::cos(rad) …

背包问题详解

前言 本文主要讲解01背包问题&#xff0c;读者如果能完全搞懂01背包&#xff0c;那么稍作思考也能解决完全背包、多重背包问题。至于分组背包、有依赖的背包等问题博主也没有继续深入&#xff0c;但是应该都是在01背包的基础上拓展&#xff0c;读者若有兴趣可查阅其他文章。 …

排序1——C语言

排序 1. 复杂度2. 插入排序2.1 直接插入排序2.2 希尔排序 3. 选择排序3.1 直接选择排序3.2 堆排序 排序在生活中很常见&#xff0c;比如在网购时&#xff0c;按价格排序&#xff0c;按好评数排序&#xff0c;点餐时&#xff0c;按评分排序等等。而排序有快和慢&#xff0c;快的…

「JS 基础」迭代器和生成器 Iterator Generator 入门

前言 JavaScript的生成器(Generators)和迭代器(Iterators)是ES6引入的功能,使得开发者可以更方便地实现自定义的迭代逻辑。 迭代器 迭代器是一种接口,它为各种不同的数据结构(如数组或者映射)定义了一个标准的遍历方法。具体来说,一个迭代器对象必须实现一个 next…