【Linux】封装一下简单库 理解文件系统

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

一、封装一下简单库

二、理解一下stdin(0)、stdout(1)、stderr(3)

2.1、为什么要有0、1、2呢?

2.2、特点

2.3、如果我想让2也和1重定向到一个文件中?

三、理解文件系统

3.1、看看物理磁盘

3.2、了解一下磁盘的储存结构

3.3、对磁盘的存储进行逻辑抽象

3.4、找到一个文件的步骤:

3.5、逆向的路径解析 --- OS自己做的

总结



前言

世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各位看官,我衷心的希望这篇博客能对你们有所帮助,同时也希望各位看官能对我的文章给与点评,希望我们能够携手共同促进进步,在编程的道路上越走越远!


提示:以下是本篇文章正文内容,下面案例可供参考

一、封装一下简单库

Stdio.h
#pragma once
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>#define LINE_SIZE 1024
#define FLUSH_NOW  1
#define FLUSH_LINE 2
#define FLUSH_FULL 4// 文件结构体类型
struct _myFILE
{unsigned int flags;int fileno;// 缓冲区char cache[LINE_SIZE];// 文件的缓冲区int cap;int pos; // 下次写入的位置
};typedef struct  _myFILE myFILE;myFILE* my_fopen(const char* path, const char* flag);
void my_fflush(myFILE* fp);
ssize_t my_fwrite(myFILE* fp, const char* data, int len);
void my_fclose(myFILE* fp);
Mystdio.c
#define _CRT_SECURE_NO_WARNINGS 1#include "mystdio.h"myFILE* my_fopen(const char* path, const char* flag)
{int flag1 = 0;// 打开文件的模式int iscreate = 0;// 是否要创建文件mode_t mode = 0666;// 文件的初始权限if (strcmp(flag, "r") == 0){flag1 = (O_RDONLY);}else if (strcmp(flag, "w") == 0){flag1 = (O_WRONLY | O_CREAT | O_TRUNC);iscreate = 1;}else if (strcmp(flag, "a") == 0){flag1 = (O_WRONLY | O_CREAT | O_APPEND);iscreate = 1;}else{}int fd = 0;// 根据是否要创建文件来使用不同的open()函数if (iscreate)fd = open(path, flag1, mode);elsefd = open(path, flag1);if (fd < 0) return NULL;myFILE* fp = (myFILE*)malloc(sizeof(myFILE));if (!fp) return NULL;fp->fileno = fd;fp->flags = FLUSH_LINE;// 行刷新fp->cap = LINE_SIZE;// 缓冲区的容量fp->pos = 0;// 当前写入文件的位置return fp;
}void my_fflush(myFILE* fp)
{write(fp->fileno, fp->cache, fp->pos);fp->pos = 0;
}// 写入数据:把用户将数据写入stdout文件当中(语言级的文件缓冲区内),将语言级的缓冲区内的内容拷贝到OS的内核级的缓冲区内
ssize_t my_fwrite(myFILE* fp, const char* data, int len)
{// 写入操作本质是拷贝, 如果条件允许,就刷新,否则不做刷新// 将数据拷贝到语言级的缓冲区memcpy(fp->cache + fp->pos, data, len); //肯定要考虑越界, 自动扩容fp->pos += len;if ((fp->flags & FLUSH_LINE) && fp->cache[fp->pos - 1] == '\n'){// 将语言级的缓冲区的数据拷贝到OS中对应的文件的内核级缓冲区my_fflush(fp);}return len;
}void my_fclose(myFILE* fp)
{my_fflush(fp);close(fp->fileno);free(fp);
}
Testfile.c
#define _CRT_SECURE_NO_WARNINGS 1
#include "mystdio.h"
#include <string.h>
#include <stdio.h>
#include <unistd.h>#define FILE_NAME "log.txt"int main()
{myFILE* fp = my_fopen(FILE_NAME, "w");if (fp == NULL) return 1;const char* str = "hello bit";int cnt = 10;char buffer[128];while (cnt){sprintf(buffer, "%s - %d", str, cnt);my_fwrite(fp, buffer, strlen(buffer)); // strlen()+1不需要cnt--;sleep(1);my_fflush(fp);}my_fclose(fp);return 0;
}

结论:C语言为什么要在FILE中提供用户级缓冲区 ----- 为了减少底层调用系统调用的次数,让使用C语言的IO函数(printf,fprintf)效率更高。

二、理解一下stdin(0)、stdout(1)、stderr(3)

2.1、为什么要有0、1、2呢?

  • 0、1 -----> 用户要知道数据从哪里来,数据要到哪里去。
  • 2 -----> 把正确的信息和错误的信息区分开来。

2.2、特点

我们是要将原本打印在屏幕行的数据打印在 log.txt 里,为什么stderr还在屏幕上显示?

标准输出重定向的本质:更改文件描述符表中下标为1的内容(地址)。下标为1的内容原先是显示器文件的地址,现在更改为 log.txt 文件的地址。

下标为1和下标为2的空间的地址都是指向显示器文件的;下标为2的空间中的地址没有被改变,依然指向显示器文件的地址。所以,stderr仍然打印在屏幕上。

2.3、如果我想让2也和1重定向到一个文件中?

./a.out 1>ok.log 2>err.log

将下标为1的内容更改成 ok.log 文件的地址;将下标为2的内容更改成 err.log 文件的地址;将正确和错误的信息分离开来。

./a.out 1>all.log 2>&1

将下标为1的内容更改成 all.log 文件的地址;取下标为1的内容的地址更改下标为2的内容;从而使2和1重定向到一个文件中。

C语言中的 perror 本质是向2对应的文件打印,printf() 本质是向1对应的文件打印。

C++中的 cout 对应的是 printf;cerr 对应的是 perror。

三、理解文件系统

3.1、看看物理磁盘

3.2、了解一下磁盘的储存结构

3.3、对磁盘的存储进行逻辑抽象

假如:一个磁盘有800GB,我们把800GB分为4个区,每个区200GB,再将每个分区分组,我们只要管理好每一个分组,就能管理好一个分区,进而管理好磁盘。

格式化:在每一个分区内部分组,然后写入文件系统的管理数据。

文件在磁盘存储的本质:=文件的内容+文件的属性数据。

Linux文件系统特定:文件内容和文件属性分开存储。

  • Block Group:许多个数据块(4kb)组成,用来存放文件的内容。
  • 超级块(Super Block):存放文件系统本身的结构信息。记录的信息主要有:block 和 inode的总量, 未使用的block和inode的数量,一个block和inode的大小,最近一次挂载的时间,最近一次写入数据的时间,最近一次检验磁盘的时间等其他文件系统的相关信息。Super Block的信息被破坏,可以说整个文件系统结构就被破坏了
  • GDT,Group Descriptor Table:块组描述符,描述整个分组里的使用情况,比如:一共有多少inode,一共有多少数据块呢?inode、数据块和Bitmap已经被占据了多少呢?那么下一个被分配的inode编号是几?由GDT来进行统一管理。
  • 块位图(Block Bitmap):Block Bitmap中记录着Data Block中哪个数据块已经被占用,哪个数据块没有被占用(比特位的位置,表示块号。比特位的内容,表示该块是否被占用。)
  • inode位图(inode Bitmap):每个bit表示一个inode是否空闲可用。
  • i节点表:存放文件属性,如:文件大小,所有者,最近修改时间等。
  • 超级块(Super Block):不是每个分组都有的。分配inode编号的范围。如果一个磁盘的某一分组的Super Block不小心被刮花了,那么可以通过其它分组的Super Block来恢复。

我们寻找文件的时候,都必须先得到inode的编号。inode编号是以分区为单位的!

但是你凭什么直接拿到inode的编号,我们一直使用的都是文件名啊!!!!

谈谈目录:

目录 = 文件属性 + 文件内容。    目录也是一个文件。

  1. 一个目录下不能建立同名文件;
  2. 查找文件的顺序,文件名 -----> inode的编号;
  3. 目录的r,本质是是否允许我们读取目录的内容;目录的内容是:文件名与inode的映射关系!!!
  4. 目录的w,新建文件,最后一定要向当前所处的目录内容中写入,文件名与inode的映射关系。

如何理解文件的增删查改呢?

  • 增:建立文件名与inode的映射关系。
  • 删:将该文件的inode编号在位图中对应的比特位置为0。

我们常说的将系统格式化,恢复出厂设置,其实就是将位图中的1全部置为0。

3.4、找到一个文件的步骤:

我们找到一个指定的文件 -----> 文件所在的目录 ------> 打开目录 -----> 根据文件名与inode的映射关系 -----> 找到目标文件inode。

但是有一个前提是:inode的编号是不能跨分区的,我们怎么才能知道我们的文件在哪一个分区内呢?

结论:比如:我用的云服务器一般只有一个盘(vda),一个盘对应了一个分区,在Linux中要访问一个分区其实要将这个分区进行挂载的,挂载也就是将一个磁盘分区和文件系统的一个目录进行关联,所以,未来进入分区,其实是进入一个指定的目录的。

分区 ----> 写入文件系统(格式化)(就是将在分组中写入管理的数据,但是此时这个分区还不能使用) ----> 挂载到指定目录下 ----> 进入该目录,自然就在该目录的分区下 ----> 在指定的分区中进行文件操作。

这也就是我们在Linux系统中,定位一个文件,在任何时候,都要有路径的原因!!!因为有路径,你就知道在哪个分区。

3.5、逆向的路径解析 --- OS自己做的

要打开当前目录,当前目录也是一个文件,你得找到当前目录的inode,那么你就得找到当前目录的上级目录;所以Linux在找到任何一个路径下的一个文件时,Linux系统一定要给我们逆向的递归式的路径解析;直到找到了根目录,就类似于找到了一个递归出口一般,然后再反向的逐次打开我们的文件。

逆向的路径解析,我们的Linux系统会一直做,那么必然会导致效率方面下降,所以Linux系统为了支持逆向路径解析,系统会把已经解析过的路径给我们进行缓存起来;那么将来要打开文件时,把要解析的路径,先在缓存里找,找不到,再解析。


总结

好了,本篇博客到这里就结束了,如果有更好的观点,请及时留言,我会认真观看并学习。
不积硅步,无以至千里;不积小流,无以成江海。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/620446.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百元内的运动蓝牙耳机哪个牌子好?五大高分品牌实测推荐

在追求健康生活的当下&#xff0c;运动已成为许多人日常生活的一部分&#xff0c;而音乐更是运动时的最佳伴侣&#xff0c;对于预算有限的学生党或普通消费者来说&#xff0c;如何在百元内挑选到一款性能优越、品质可靠的运动蓝牙耳机&#xff0c;确实是个不小的挑战&#xff0…

医学图像分割入门-UNet理论与实践

U-Net: 用于图像分割的深度学习网络 引言 在计算机视觉领域&#xff0c;图像分割是一项重要的任务&#xff0c;旨在将图像中的每个像素分配到预定义的类别或区域。传统的图像分割方法通常基于手工设计的特征和启发式算法&#xff0c;但随着深度学习的发展&#xff0c;基于深度…

【Datawhale LLM学习笔记】一、什么是大型语言模型(LLM)

文章目录 1. 什么是大模型2. 检索增强生成 RAG一、什么是 RAG二、RAG 的工作流程 3. langChain介绍一、什么是 LangChain二、LangChain 的核心组件 4. 开发 LLM 应用的整体流程一、何为大模型开发二、大模型开发的一般流程三、搭建 LLM 项目的流程简析&#xff08;以知识库助手…

长波热红外应用

长波热红外通常是指波长范围在8至14微米之间的红外辐射。这种红外辐射主要来自于物体的热能&#xff0c;因此也称为热红外辐射。相比于短波红外&#xff0c;长波热红外更适合用于测量和探测物体的温度&#xff0c;因为它们能够捕捉到物体辐射的长波长热能&#xff0c;从而提供更…

推荐:跟风用的几款在线文档编辑器超好用

在信息化浪潮中&#xff0c;越来越多人开始尝试并依赖在线文档编辑器进行日常的办公和学习。随着技术的不断进步&#xff0c;市场上的在线文档编辑器层出不穷&#xff0c;各有特色。今天&#xff0c;就来给大家推荐几款跟风用的在线文档编辑器&#xff0c;它们不仅功能强大&…

实现iOS App代码混淆

简介 在开发iOS应用程序时&#xff0c;保护代码安全是至关重要的。代码混淆是一种常用的技术&#xff0c;可以增加逆向工程的难度&#xff0c;防止他人对代码的篡改和盗用。本文将介绍如何实现iOS App代码混淆的步骤和操作方法。 整体流程 下面是实现iOS App代码混淆的整体流…

最新彩虹知识付费商城源码 V3.4

最新彩虹知识付费商城源码 V3.4&#xff0c;支持二级分类&#xff0c;多级分销&#xff0c;秒杀&#xff0c;砍价&#xff0c;团购&#xff0c;首页继续浏览&#xff0c;分站个人虚拟余额自定义&#xff0c;最新批量对接&#xff0c;批量下载图片&#xff0c;批量替换标题&…

外贸高手写的开发信为什么回复率很高

关于开发信这个主题&#xff0c;其实已经算是个烂大街的话题。但是在效仿、参考、摸索开发信这一课题的路上&#xff0c;很多小白还是没摸准要旨&#xff0c;走了不少弯路。这也是为什么小编老话题重提的原因。以下整理了外贸高手写开发信用到的技巧和规律&#xff0c;希望能给…

docker安装nessus服务及使用

Nessus 是目前全世界最多人使用的系统漏洞扫描与分析软件&#xff0c;现在软件服务越来越多&#xff0c;越来越复杂&#xff0c;涉及的数据也更多&#xff1b;因此系统完成后对于系统漏洞的检测并对其进行修改十分有必要&#xff0c;本文介绍通过docker安装nessus服务及简单的使…

今年消费新潮流:零元购商业模式

今天给大家推荐一种极具创新的电子商务模式&#xff1a;零元购商业模式 这个模式支持消费者以零成本或极低成本购买商品。这种模式主要通过返现、积分、优惠券等方式来减少支付金额&#xff0c;使消费者实现“零成本”购物的目标。 人民网在去年发表了一篇文章。 总结了一下&a…

华为ensp中nat地址转换(静态nat 动态nat NAPT 和Easy IP)配置命令

作者主页&#xff1a;点击&#xff01; ENSP专栏&#xff1a;点击&#xff01; 创作时间&#xff1a;2024年4月15日12点03分 实验拓扑 接下来我会分几个方面初步将静态nat和napt easy ip 首先基本的环境配置 AR1的基本配置 //基本的IP配置和默认路由指向外网 <Huawei&…

盲盒小程序开发:探索未知,开启惊喜之旅

随着移动互联网的快速发展&#xff0c;小程序作为一种轻量级、便捷的应用形式&#xff0c;正逐渐改变着人们的生活方式。在这个充满创新与变革的时代&#xff0c;盲盒小程序的开发应运而生&#xff0c;为用户带来一种全新的购物体验&#xff0c;让每一次选择都充满未知与惊喜。…