书生·浦语大模型全链路开源体系-第3课

书生·浦语大模型全链路开源体系-第3课

  • 书生·浦语大模型全链路开源体系-第3课
    • 相关资源
    • RAG 概述
    • 在 InternLM Studio 上部署茴香豆技术助手
      • 环境配置
        • 配置基础环境
        • 下载基础文件
        • 下载安装茴香豆
      • 使用茴香豆搭建 RAG 助手
        • 修改配置文件
      • 创建知识库
        • 运行茴香豆知识助手
    • 在茴香豆 Web 版中创建自己领域的知识问答助手

书生·浦语大模型全链路开源体系-第3课

为了推动大模型在更多行业落地应用,让开发人员更高效地学习大模型的开发与应用,上海人工智能实验室重磅推出书生·浦语大模型实战营,为开发人员提供大模型学习和开发实践的平台。
本文是书生·浦语大模型全链路开源体系-第3课的课程实战。

相关资源

  • InternLM项目地址

https://github.com/InternLM/InternLM

  • InternLM2技术报告

https://arxiv.org/pdf/2403.17297.pdf

  • 书生·万卷 数据

https://opendatalab.org.cn/

  • 课程链接

https://www.bilibili.com/video/BV1AH4y1H78d/

RAG 概述

RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。

RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用的茴香豆应用,就应用了 RAG 技术,可以快速、高效的搭建自己的知识领域助手。

在 InternLM Studio 上部署茴香豆技术助手

环境配置

配置基础环境

从官方环境复制运行 InternLM 的基础环境,命名为 InternLM2_Huixiangdou,在命令行模式下运行:

studio-conda -o internlm-base -t InternLM2_Huixiangdou

创建新的虚拟环境。

image-20240407214921836.png

安装必要的依赖库。

image-20240407220633102.png

安装完成。

image-20240407220739796.png

安装完成后,在本地查看环境。

conda env list

可以看到新创建的虚拟环境 InternLM2_Huixiangdou

运行 conda 命令,激活 InternLM2_Huixiangdou 虚拟环境:

conda activate InternLM2_Huixiangdou
下载基础文件

复制茴香豆所需模型文件,我们可以直接创建软链接,连接到share目录下默认下载好的模型文件。

# 创建模型文件夹
cd /root && mkdir modelscd /root/models# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 ./bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 ./bce-reranker-base_v1# 复制大模型参数(如果之前创建过软链接,这步可以不用执行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b ./internlm2-chat-7b# 安装 python 依赖
pip install protobuf==4.25.3 accelerate==0.28.0 aiohttp==3.9.3 auto-gptq==0.7.1 bcembedding==0.1.3 beautifulsoup4==4.8.2 einops==0.7.0 faiss-gpu==1.7.2 langchain==0.1.14 loguru==0.7.2 lxml_html_clean==0.1.0 openai==1.16.1 openpyxl==3.1.2 pandas==2.2.1 pydantic==2.6.4 pymupdf==1.24.1 python-docx==1.1.0 pytoml==0.1.21 readability-lxml==0.8.1 redis==5.0.3 requests==2.31.0 scikit-learn==1.4.1.post1 sentence_transformers==2.2.2 textract==1.6.5 tiktoken==0.6.0 transformers==4.39.3 transformers_stream_generator==0.0.5 unstructured==0.11.2# 由于重启开发机会丢失安装的系统软件,所以以下系统软件每次重启开发机都需要重新安装。如果没有必要,以下步骤可不执行。
# apt update && apt -y install python-dev python libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev

image-20240407221255802.png

依赖安装完成。

image-20240407222116811.png

下载安装茴香豆

从茴香豆官方仓库下载茴香豆。

cd /root/code
# 下载 repo
git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 447c6f7e68a1657fce1c4f7c740ea1700bde0440

image-20240407222359312.png

使用茴香豆搭建 RAG 助手

修改配置文件

用已下载模型的路径替换 /root/code/huixiangdou/config.ini 文件中的默认模型,需要修改 3 处模型地址,分别是:

用于向量数据库和词嵌入的模型

sed -i '6s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/code/huixiangdou/config.ini

用于检索的重排序模型

sed -i '7s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/code/huixiangdou/config.ini

和本次选用的大模型

sed -i '29s#.*#local_llm_path = "/root/models/internlm2-chat-7b"#' /root/code/huixiangdou/config.ini

修改好的配置文件应该如下图所示:

image-20240407224638413.png

创建知识库

使用 InternLMHuixiangdou 文档作为新增知识数据检索来源,在不重新训练的情况下,打造一个 Huixiangdou 技术问答助手。

首先,下载 Huixiangdou 语料:

cd /root/code/huixiangdou && mkdir repodirgit clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou

image-20240407225203602.png

提取知识库特征,创建向量数据库。数据库向量化的过程应用到了 LangChain 的相关模块,默认嵌入和重排序模型调用的网易 BCE 双语模型,如果没有在 config.ini 文件中指定本地模型路径,茴香豆将自动从 HuggingFace 拉取默认模型。

除了语料知识的向量数据库,茴香豆建立接受和拒答两个向量数据库,用来在检索的过程中更加精确的判断提问的相关性,这两个数据库的来源分别是:

  • 接受问题列表,希望茴香豆助手回答的示例问题
    • 存储在 huixiangdou/resource/good_questions.json
  • 拒绝问题列表,希望茴香豆助手拒答的示例问题
    • 存储在 huixiangdou/resource/bad_questions.json
    • 其中多为技术无关的主题或闲聊
    • 如:“nihui 是谁”, “具体在哪些位置进行修改?”, “你是谁?”, “1+1”

运行下面的命令,增加茴香豆相关的问题到接受问题示例中:

cd /root/code/huixiangdou
mv resource/good_questions.json resource/good_questions_bk.jsonecho '["mmpose中怎么调用mmyolo接口","mmpose实现姿态估计后怎么实现行为识别","mmpose执行提取关键点命令不是分为两步吗,一步是目标检测,另一步是关键点提取,我现在目标检测这部分的代码是demo/topdown_demo_with_mmdet.py demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth   现在我想把这个mmdet的checkpoints换位yolo的,那么应该怎么操作","在mmdetection中,如何同时加载两个数据集,两个dataloader","如何将mmdetection2.28.2的retinanet配置文件改为单尺度的呢?","1.MMPose_Tutorial.ipynb、inferencer_demo.py、image_demo.py、bottomup_demo.py、body3d_pose_lifter_demo.py这几个文件和topdown_demo_with_mmdet.py的区别是什么,\n2.我如果要使用mmdet是不是就只能使用topdown_demo_with_mmdet.py文件,","mmpose 测试 map 一直是 0 怎么办?","如何使用mmpose检测人体关键点?","我使用的数据集是labelme标注的,我想知道mmpose的数据集都是什么样式的,全都是单目标的数据集标注,还是里边也有多目标然后进行标注","如何生成openmmpose的c++推理脚本","mmpose","mmpose的目标检测阶段调用的模型,一定要是demo文件夹下的文件吗,有没有其他路径下的文件","mmpose可以实现行为识别吗,如果要实现的话应该怎么做","我在mmyolo的v0.6.0 (15/8/2023)更新日志里看到了他新增了支持基于 MMPose 的 YOLOX-Pose,我现在是不是只需要在mmpose/project/yolox-Pose内做出一些设置就可以,换掉demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py 改用mmyolo来进行目标检测了","mac m1从源码安装的mmpose是x86_64的","想请教一下mmpose有没有提供可以读取外接摄像头,做3d姿态并达到实时的项目呀?","huixiangdou 是什么?","使用科研仪器需要注意什么?","huixiangdou 是什么?","茴香豆 是什么?","茴香豆 能部署到微信吗?","茴香豆 怎么应用到飞书","茴香豆 能部署到微信群吗?","茴香豆 怎么应用到飞书群","huixiangdou 能部署到微信吗?","huixiangdou 怎么应用到飞书","huixiangdou 能部署到微信群吗?","huixiangdou 怎么应用到飞书群","huixiangdou","茴香豆","茴香豆 有哪些应用场景","huixiangdou 有什么用","huixiangdou 的优势有哪些?","茴香豆 已经应用的场景","huixiangdou 已经应用的场景","huixiangdou 怎么安装","茴香豆 怎么安装","茴香豆 最新版本是什么","茴香豆 支持哪些大模型","茴香豆 支持哪些通讯软件","config.ini 文件怎么配置","remote_llm_model 可以填哪些模型?"
]' > /root/code/huixiangdou/resource/good_questions.json

image-20240407225630809.png

再创建一个测试用的问询列表,用来测试拒答流程是否起效:

cd /root/huixiangdouecho '[
"huixiangdou 是什么?",
"你好,介绍下自己"
]' > ./test_queries.json

在确定好语料来源后,运行下面的命令,创建 RAG 检索过程中使用的向量数据库:

# 创建向量数据库存储目录(该步骤可以不做,后续程序会自动创建)
cd /root/code/huixiangdou && mkdir workdir # 分别向量化知识语料、接受问题和拒绝问题中后保存到 workdir
python3 -m huixiangdou.service.feature_store --sample ./test_queries.json

完成后,Huixiangdou 相关的新增知识就以向量数据库的形式存储在 workdir 文件夹下。

检索过程中,茴香豆会将输入问题与两个列表中的问题在向量空间进行相似性比较,判断该问题是否应该回答,避免群聊过程中的问答泛滥。确定的回答的问题会利用基础模型提取关键词,在知识库中检索 top K 相似的 chunk,综合问题和检索到的 chunk 生成答案。

image-20240407230020798.png

image-20240407230048939.png

运行茴香豆知识助手

我们已经提取了知识库特征,并创建了对应的向量数据库。现在,让我们来测试一下效果:

命令行运行:

cd /root/code/huixiangdou/# 填入问题
sed -i '74s/.*/    queries = ["huixiangdou 是什么?", "茴香豆怎么部署到微信群", "今天天气怎么样?"]/' /root/code/huixiangdou/huixiangdou/main.py# 运行茴香豆
python3 -m huixiangdou.main --standalone

image-20240407231243120.png

image-20240407231330571.png

RAG 技术的优势就是非参数化的模型调优,这里使用的仍然是基础模型 InternLM2-Chat-7B, 没有任何额外数据的训练。面对同样的问题,我们的茴香豆技术助理能够根据我们提供的数据库生成准确的答案:

image-20240407231451312.png

image-20240407231512978.png

在茴香豆 Web 版中创建自己领域的知识问答助手

茴香豆 Web 版 在 OpenXLab 上部署了混合模型的 Demo,我们可以上传自己的语料库测试效果。

首先,打开茴香豆 Web 版的网址,设置一个知识库的名称OpenXLab浦源平台服务协议,并设置一个容易记住的密码,点击前往按钮,创建一个知识库并进入。

image-20240407232320891.png

在知识库中,我们需要上传自己的知识库文件,支持PDF、Word、MarkDown、Excel等格式的文件。选择知识库文件,点击确认上传按钮进行上传。

image-20240407232423537.png

文件上传成功后,我们就拥有了一个有相关领域知识的知识库。然后我们就可以进行提问了。

image-20240407232740784.png

首先,我们来问一下协议的范围,看看茴香豆怎么说。可以看到,RAG助手可以正常从知识库中检索知识、生成回答内容。

image-20240407233048613.png

再来问问服务内容,它确实能检索并回答。

image-20240407233357925.png

如果你不知道怎么注册浦源账号,你也可以问问茴香豆,它会告诉你流程的。

image-20240407233610591.png

一定要注意自己的行为规范,科学、合理地使用平台。如果你不知道哪些地方需要注意,那就来问茴香豆吧。

image-20240407233937408.png

当然,一定要注意自己的信息保密和隐私保护哦,茴香豆会告诉你该怎么做的。

image-20240407234222341.png

至此,我们就完成了在茴香豆 Web 版中创建自己领域的知识问答助手,并且完成了几轮问题问答。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/621013.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Zookeeper集群+消息队列Kafka

一. Zookeeper 集群的相关知识 1. zookeeper的概念 ZooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的…

【七 (1)指标体系建设-构建高效的故障管理指标体系】

目录 文章导航一、故障概述1、故障:2、故障管理: 二、指标体系概述1、指标2、指标体系 三、指标体系构建难点1、管理视角2、业务视角3、技术视角 四、指标体系构建原则1、与战略目标对齐2、综合和平衡3、数据可获得性4、可操作性5、具体和可衡量6、参与和…

【数据库】数据库应用系统生命周期

目录 1.为什么提出”软件工程“的思想? 2.为什么提出”瀑布模型“?缺点是什么? 3.为什么提出”快速原型模型“? 4.为什么提出”螺旋模型“? 5.关于数据库的英文缩写。 6.模型设计中的3条设计主线:数…

基于Springboot+Vue+mysql仓库管理系统仓库进销存管理系统

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

mybash---打造自己的命令解释器

目前我们Linux的系统默认的命令解释器是bash; 命令解释器(也称为命令行解释器或shell)是计算机操作系统中的一个重要组件,它负责接收用户输入的命令,并解释和执行这些命令。其实命令解释器就是解析命令,执行命令,输出反馈; 1.命令…

linux 云计算平台基本环境(知识准备篇)

为了更多的了解云计算平台,结合云计算和linux的知识写了一篇云计算的介绍和汇总。 文章目录 前言1. centos的软件管理1.1 yum软件包管理1.1.1 yum命令语法:1.1.2 安装软件包的步骤1.1.3 yum源 2. 主机名管理与域名解析3. centos的防火墙管理4. openstack…

docker-compose yaml指定具体容器网桥ip网段subnet;docker创建即指定subnet;docker取消自启动

1、docker-compose yaml指定具体容器网桥ip网段subnet docker-compose 启动yaml有时可能的容器网段与宿主机的ip冲突导致宿主机上不了网,这时候可以更改yaml指定subnet 宿主机内网一般是192**,这时候容器可以指定172* version: 3.9 services:coredns:…

CentOS如何使用Docker部署Plik服务并实现公网访问本地设备上传下载文件

文章目录 1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 本文介绍如何使用Linux docker方式快速安装Plik并且结合Cpolar内网穿透工具实现远程访问,实现随时随地在任意设备上传或者…

IP代理池:隐私保护的得力助手与强化策略

目录 前言 1. IP代理池的原理 2. IP代理池的实现 3. 强化策略 总结 代码示例(Python) 前言 随着互联网的快速发展,越来越多的网络应用和服务涌现出来,我们的个人隐私也面临着越来越大的威胁。在这个数字化时代,…

Xxl-job执行器自动注册不上的问题

今天新建的项目要部署xxl-job,之前部署过好多次,最近没怎么部署,生疏了。部署完之后,服务一直没有注册到执行器管理里面,找了半天也没找到原因,看数据库里的xxl_job_registry表也是一直有数据进来。 后来看…

如何在Linux通过docker搭建Plik文件系统并实现无公网IP管理内网文件

文章目录 1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 本文介绍如何使用Linux docker方式快速安装Plik并且结合Cpolar内网穿透工具实现远程访问,实现随时随地在任意设备上传或者…

标准版uni-app移动端页面添加/开发操作流程

页面简介 uni-app项目中,一个页面就是一个符合Vue SFC规范的.vue文件或.nvue文件。 .vue页面和.nvue页面,均全平台支持,差异在于当uni-app发行到App平台时,.vue文件会使用webview进行渲染,.nvue会使用原生进行渲染。…