年轻代频繁GC ParNew导致http变慢

背景介绍

某日下午大约四点多,接到合作方消息,线上环境,我这边维护的某http服务突然大量超时(对方超时时间设置为300ms),我迅速到鹰眼平台开启采样,发现该服务平均QPS到了120左右,平均RT在2秒多到3秒,部分毛刺高达5到6秒(正常时候在60ms左右)。

qps情况:

在这里插入图片描述

rt情况
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Yh5Dkh5l-1691546155736)(/uploads/new2021/images/m_62d7c0b3a62e26f8cc5167dc1669b3ec_r.png)]

问题解决

该服务是一个对内的运营平台服务(只部署了两台docker)预期qps个位数,近期没做过任何的线上发布,核心操作是整合查询数据库,一次请求最多涉及40次左右的DB查询,最终查询结果为一个多层树形结构,一个响应体大约50K。之前口头跟调用方约定要做缓存,现在看到QPS在120左右,(QPS证明没有做缓存),遂要求对方做缓存,降低QPS。后QPS降到80以内,rt恢复正常(平均60ms),最终QPS一直降到40(后续需要推动调用方上缓存,保证QPS在个位数)。

问题定位

由于该服务核心操作是查询数据库,且一次请求有40次DB query,遂首先排查是否慢sql导致,查看db性能监控,发现db 平均rt在0.3ms以内,可以算出来DB整体耗时在12ms左右,排除慢sql导致RT变高。

开始怀疑,是否DB连接池在高并发下出现排队,tddl默认的连接池大小是10.一查监控,整个占用的连接数从来没有超过7个,排除连接池不足的问题。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RvB79KCq-1691546155737)(/uploads/new2021/images/m_2c7e0b0f6b572ac90f9ec5dfb67ab396_r.png)]

至此,造成RT高的原因,在数据库层面被排除。

接着开始查采样到的服务调用链上的每一个执行点,看看到底是调用链上的那部分耗时最多。发现里面很多执行点都有一个特点,就是本地调用耗时特别长(几百毫秒),但是真正的服务调用(比如db查询动作)时间却很短,(0ms代表执行时间小于1ms,也间接印证之前db的平均RT在0.3ms以内)

本地调用耗时: 267ms

客户端发送请求: 0ms

服务端处理请求: 0ms

客户端收到响应: 1ms

总耗时: 1ms

这时候问题逐渐清晰,问题出现在本地方法执行的耗时过长,可是再次检查该服务所有代码,并没有需要长耗时的本地执行逻辑,那么继续看CPU的load情况。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-naLsYLu6-1691546155737)(/uploads/new2021/images/m_3382613beb181c991e8e34dd22a4a2b8_r.png)]

load长时间在4左右徘徊,我们的docker部署在4c8G的宿主机上,但是我们不能独占这个4C的,持续这么高的load已经不正常了。

继续追查cpu load飙高的原因,接着去看GC日志,发现大量的Allocation Failure,然后ParNew次数在每分钟100次以上,明显异常,见下GC日志例子

2020-03-25T16:16:18.390+0800:1294233.934: [GC (Allocation Failure)2020-03-25T16:16:18.391+0800:1294233.935: [ParNew:1770060K->25950K(1922432K),0.0317141secs]2105763K->361653K(4019584K),0.0323010secs] [Times: user=0.12sys=0.00, real=0.04secs]

每次占用cpu的时间在0.04s左右,但是由于ParNew GC太过频繁,每分钟最高100次以上,整体占用cpu时间还是很可观。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wLIQ4XwE-1691546155737)(/uploads/new2021/images/m_9dd9bb7ccc92f6f05715c7bdb851f653_r.png)]

看了下jvm内存参数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kZdvSCtN-1691546155738)(/uploads/new2021/images/m_ab6f4b87a3fc19d1701754c6734a7cc1_r.png)]

年轻代分配了2G内存,其中eden区约1.7G

使用jmap查看年轻代对象占用空间情况,排名靠前的有多个org.apache.tomcat.util.buf包下的对象,比如ByteChunk、CharChunk、MessageBytes等,以及响应涉及的一些临时对象列表。其中ByteChunk等即tomcat响应输出相关类

至此问题明确,超大响应包(50K)在发送到网卡的过程中,需要经过从用户态user space拷贝到内核态 kernel space,然后在拷贝到网卡进行发送(像netty等的零拷贝针对的就是这种拷贝),加上响应体查询过程中,涉及的大量临时对象list,在高并发场景下,就导致年轻代内存占满,然后频繁gc(后续在合适的时间会压测该接口),这里还有一个点,很多人以为ParNewGC不会stop the world,其实是会的。频繁ParNewGC造成用户线程进入阻塞状态,让出CPU时间片,最终导致连接处理等待,接口的RT变高。整个排查过程,鹰眼,idb性能监控等可视化监控平台帮助真的很大,否则到处去查日志得查的晕头转向了。

经验总结
接口设计,需要避免超大响应体出现,分而治之,将一个大接口拆分为多个小接口。

缓存设计,像这个服务一样,一个请求带来将近40次DB查询的,需要考虑在服务端进行缓存(当时偷懒了,要求调用方去做缓存)。

性能设计,要对自己负责系统的性能了如指掌,可以通过压测等手段得到自己系统的天花板,否则,某一个接口hang住,会导致整个应用的可用性出现问题。

流量隔离,内部应用和外部流量之间,需要进行流量隔离,即使通过缓存,也有缓存击穿的问题。

口头说的东西都不靠谱,要落在文档上,还需要检查执行情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/62456.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROS入门-第 1 章 ROS概述与环境搭建

目录 第 1 章 ROS概述与环境搭建 1.1 ROS简介 1.1.1 ROS概念 1.1.2 ROS设计目标 1.1.3 ROS发展历程 1.3 ROS快速体验 1.3.1 HelloWorld实现简介 1.3.2 HelloWorld(C版) 步骤 1:创建工作空间 步骤 2:创建发布者节点 步骤…

Linux系统USB转串口芯片 GPIO使用教程

一、简介 WCH的多款USB转单路/多路异步串口芯片,除串口接口以外,还提供独立的GPIO接口,各GPIO引脚支持独立的输出输入,GPIO功能的使用需要与计算机端厂商驱动程序和应用软件配合使用。各芯片的默认GPIO引脚状态有所区别&#xff…

ESP-IDF插件去除红色波浪线

如图,新装的ESP-IDF打开别人的工程有好多红色波浪线。 把这里的第一个文件夹删除,就是那个.vscode,接下来按ctrlshiftP,输入vscode, 选第一个,添加配置文件夹。 问题解决。 之后记得重新配置板子信息和串…

STM32 低功耗-停止模式

STM32 停止模式 文章目录 STM32 停止模式第1章 低功耗模式简介第2章 停止模式简介2.1 进入停止模式2.1 退出停止模式 第3章 停止模式程序部分总结 第1章 低功耗模式简介 在 STM32 的正常工作中,具有四种工作模式:运行、睡眠、停止以及待机模式。 在系统…

linux自启动程序

嵌入式linux下有软件需要自启动,只需要在/etc/init.d/rcS末尾添加所要启动的程序即可,开机就会自动运行 vi /etc/init.d/rcS在文件末尾添加 例:

PLL 的 verilog 实现

锁相环(PLL)是一种常用的频率、相位追踪算法,在信号解调、交流并网等领域有着广泛的应用。本文对全数字锁相环的原理进行介绍,随后给出 verilog 实现及仿真。 PLL 锁相原理 锁相环结构如下图所示,主要由鉴相器、环路滤…

交换机的堆叠技术

目录 一、堆叠的优势 1、提高可靠性 2、简化组网 3、简化管理 4、强大的网络拓展 二、堆叠的方式 1、堆叠卡堆叠 2、业务口堆叠 3、堆叠卡和业务卡堆叠的优缺点 三、堆叠的原理 1、角色 2、单机堆叠 3、堆叠ID 4、堆叠的优先级 5、堆叠的建立过程 1&#xff09…

【算法】双指针——leetcode盛最多水的容器、剑指Offer57和为s的两个数字

盛水最多的容器 (1)暴力解法 算法思路:我们枚举出所有的容器大小,取最大值即可。 容器容积的计算方式: 设两指针 i , j ,分别指向水槽板的最左端以及最右端,此时容器的宽度为 j - i 。由于容器…

React Native连接Zebra斑马打印机通过发送CPCL指令打印(Android 和 iOS通用)

自 2015 年发布以来,React Native 已成为用于构建数千个移动应用程序的流行跨平台移动开发框架之一。通常,我们有开发人员询问如何将 Link-OS SDK 与 React Native 应用程序集成,以便在 Zebra 打印机上打印标签。在本教程中,我们将…

[Kubernetes]Kubeflow Pipelines - 基本介绍与安装方法

1. 背景 近些年来,人工智能技术在自然语言处理、视觉图像和自动驾驶方面都取得不小的成就,无论是工业界还是学术界大家都在惊叹一个又一个的模型设计。但是对于真正做过算法工程落地的同学,在惊叹这些模型的同时,更多的是在忧虑如…

最大交换(力扣)枚举 JAVA

给定一个非负整数,你至多可以交换一次数字中的任意两位。返回你能得到的最大值。 示例 1 : 输入: 2736 输出: 7236 解释: 交换数字2和数字7。 示例 2 : 输入: 9973 输出: 9973 解释: 不需要交换。 注意: 给定数字的范围是 [0, 10^8] 解题思路: 1、数最…

C++实现俄罗斯方块(源码+详解)

👂 Take me Hand Acoustic - Ccile Corbel - 单曲 - 网易云音乐 源码Debug工具 (1)cppreference.com (主) (2)必应 (bing.com) (3)GPT(主) &#…