GPT 浅析

GPT 浅析

文章目录

  • GPT 浅析
    • GPT 1
      • 无监督预训练
      • 有监督微调
      • 任务相关的输入变换
    • GPT2
    • GPT3

GPT 1

在模型架构上,GPT-1基于Transformer构造,这是因为与其他卷积神经网 络或者循环神经网络相比,Transformer提供了效率更高的方法来处理文本 中的长期依赖关系。

预训练技术:GPT-1使用了一种称为“生成式预训练”(Generative Pre-Training,GPT)的技术。预训练分为两个阶段:预训练和微调(fine-tuning)。

在预训练阶段,GPT-1使用了大量的无标注文本数据集,例如维基百科和网页文本等。通过最大化预训练数据集上的对数极大似然概率来训练模型参数。在微调阶段,GPT-1将预训练模型的参数用于特定的自然语言处理任务,如文本分类和问答系统等。

多层模型:GPT-1模型由多个堆叠的Transformer编码器组成,每个编码器包含多个注意力头和前向神经网络。这使得模型可以从多个抽象层次对文本进行建模,从而更好地捕捉文本的语义信息。

无监督预训练

给定一个无监督的语料数据集 U = { u 1 , u 2 , . . . , u n } \mathbf{U}=\{\boldsymbol{u}_1,\boldsymbol{u}_2,...,\boldsymbol{u}_n\} U={u1,u2,...,un}, GPT-1使用标准的语言模型进行训练,也就是最大化如下似然估计:

L 1 ( U ) = ∑ i l o g P ( u i ∣ u i − k , . . . , u i − 1 ; θ ) L_1(\mathbf{U})=\sum_ilogP(\boldsymbol{u}_i|\boldsymbol{u}_{i-k},...,\boldsymbol{u}_{i-1};\boldsymbol{\theta}) L1(U)=ilogP(uiuik,...,ui1;θ)
其中, k k k 表示上下文窗口的大小,P表示条件概率, θ \theta θ是网络的参数,采用梯度下降法进行训练。

GPT-1使用一个多层Transformer解码器进行语言建模,该模型对输入上 下文使用多头自注意力机制,然后使用前馈神经网络预测目标单词的概 率分布,建模过程如下:
h 0 = U W e + W p h l = t r a n s f o r m e r _ b l o c k ( h l − 1 ) P ( U ) = s o f t m a x ( h n W e T ) \begin{aligned} \boldsymbol{h}_0&=\boldsymbol{UW}_e+\boldsymbol{W}_p\\ \boldsymbol{h}_l&=transformer\_block(\boldsymbol{h}_{l-1})\\ P(\boldsymbol{U})&=softmax(\boldsymbol{h}_n\boldsymbol{W}_e^T) \end{aligned} h0hlP(U)=UWe+Wp=transformer_block(hl1)=softmax(hnWeT)
其中, W e W_e We是一个单词向量矩阵, W p W_p Wp是位置向量矩阵, U U U 表示输入文本的上下文向量, n n n​是网络层数。

有监督微调

在使用上述方法进行预训练之后,GPT-1采用有监督微调方法将参数调整到更适合下游任务的状态

假设现在有某个有标记的样本集 C C C,其中每个样本由一系列的输入单词 { x 1 , x 2 , . . . , x m } \{x^1,x^2,...,x^m\} {x1,x2,...,xm}和一个标签 y y y组成,那么输入单词序列首先被送入在前一个阶段预训练好的模型中得到一个状态向量 h l m h_l^m hlm,接着被送入一个线性层进行结果预测:
P ( y ∣ x 1 , x 2 , . . . , x m ) = s o f t m a x ( h l m W y ) P(y|x^1,x^2,...,x^m)=softmax(h_l^mW_y) P(yx1,x2,...,xm)=softmax(hlmWy)
基于此,有监督微调阶段的目标函数就是:
L 2 ( C ) = ∑ ( x , y ) l o g P ( y ∣ x 1 , x 2 , . . . , x m ) L_2(\mathbf{C})=\sum_{(x,y)}logP(\mathbf{y}|\mathbf{x}^1,\mathbf{x}^2,...,\mathbf{x}^m) L2(C)=(x,y)logP(yx1,x2,...,xm)
与此同时,GPT-1的设计人员发现,在有监督微调阶段将语言模型作为微调的辅助目标能够进一步提升模型的泛化能力,并且可以加速收敛帮助学习。最终,在有监督微调阶段,模型的训练目标变为:
L 3 ( C ) = L 2 ( C ) + λ × L 1 ( C ) \begin{aligned}L_3(\mathbf{C})=L_2(\mathbf{C})+\lambda\times L_1(\mathbf{C})\end{aligned} L3(C)=L2(C)+λ×L1(C)
其中 λ \lambda λ是权重系数。

任务相关的输入变换

对于像文本分类一样的任务,可以按照上述有监督微调阶段所提到的方法进行微调,但是像问答、文本蕴含等自然语言理解任务,则需要在输 入阶段进行相应的设计和修改,才可以将GPT模型进行应用。

在微调阶段,所有任务的输入都增加了特殊的Token作为输入的开始 [start]和结束[extract]。

  • 对于文本分类任务,将起始和终止token加入到原始序列两端,输入transformer中得到特征向量,最后经过一个全连接得到预测的概率分布

  • 对于文本蕴含任务,设计者将前提和假设进行拼接,然后在二者之间增 加了一个特殊标记“Delim” 。

  • 对于文本相似度计算任务,由于被计算相似度的两个句子之间没有前后顺序关系,所以对同一对数据进行了不同顺序的拼接,最后使用线性化得到相似度得分。特别地,输入时两个句子之间增加了特殊标记 “Delim” ,用来区分前后两个句子。

  • 对于多项选择的问答任务,将每个候选答案与问题和原文片段进行拼接, 得到相应的向量表示,最后使用Softmax函数在候选答案范围中进行结 果概率预测。

image-20240415235312343

在模型实现细节上,GPT-1很大程度上遵循了原始的Transformer工作模式, 训练了一个具有掩码自注意力机制的12层仅包含解码器的Transformer。对 于前馈神经网络,使用了3072维的内部状态,使用最大学习率为2.5×10-4 的Adam优化方案。

GPT2

GPT-2提供了一种更为灵活和通用的形式来指定任务、输入和输出,避免了算法级别的任务定制。如在机器翻译任务中,模型的输入可以被设定为 “请翻译为法语、英语原文内容、对应法语内容”;在机器阅读理解任务 中,训练样本可以被写成“问题的答案、问题、原文、答案” 。

GPT-2的思想本质上就是早期的指令微调(Prompt Finetuning)方法,这种做法可以使得模型学习在遇到类似的提示语之后,应该输出什么样的内 容。

在模型实现上,GPT-2仍然使用Transformer作为主干模型,与GPT-1的整体架构类似,只进行了少量修改,包括层归一化被移到每个块的输入部分, 起到类似预激活的作用,在最终的自注意力块之后又增加了额外的层归一化,同时Transformer的Decoder层数从GPT-1的12层增加到了24层、36 层和48层。

GPT3

GPT-3的主要目标是使用更少的领域数据,且不经过微调去解决问题。它沿用GPT-2的模型和训练方法,将模型参数大小从GPT-2的15亿个升级到1750亿。

在几十个自然语言处理数据集上对GPT-3进行了评估,包括三种设置:

  1. 零样本学习(Zero-shot Learning):不允许展示具体的任务样本,只告知模型自然语言表示的指令;
  2. 单样本学习(One-shot Learning): 只允许向模型展示一个样本;
  3. 小样本学习(Few-shot Learning): 允许尽可能多的向模型展示样本(大概在10-100个之间)。

在开发GPT-3的过程中,研究人员发现,模型增大之后,引入一些质量较差的数据带来的负面影响变小了,因此与GPT-1和GPT-2相比,GPT-3开始使用Common Crawl数据集进行训练。

image-20240416090215933

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625104.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NTC热敏电阻采集温度-单片机通用模板

NTC热敏电阻采集温度-单片机通用模板 一、NTC热敏电阻转换温度的原理二、AT104Tem.c的实现三、AT104Tem.h的实现 一、NTC热敏电阻转换温度的原理 ①NTC热敏电阻会随着温度的升高,电阻值R逐渐降低;②硬件搭建电阻分压电路采集ADC逆推热敏电阻当前的阻值&…

开源全方位运维监控工具:HertzBeat

HertzBeat:实时监控系统性能,精准预警保障业务稳定- 精选真开源,释放新价值。 概览 HertzBeat是一款深受广大开发者喜爱的开源实时监控解决方案。它以其简洁直观的设计理念和免安装Agent的特性,实现了对各类服务器、数据库及应用…

Flink学习(六)-容错处理

前言 Flink 是通过状态快照实现容错处理 一、State Backends 由 Flink 管理的 keyed state 是一种分片的键/值存储,每个 keyed state 的工作副本都保存在负责该键的 taskmanager 本地中。 一种基于 RocksDB 内嵌 key/value 存储将其工作状态保存在磁盘上&#x…

基于Adaboost模型的数据预测和分类matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 AdaBoost(Adaptive Boosting)是一种集成学习方法,由Yoav Freund和Robert Schapire于1995年提出,主要用于提高弱分类…

Maven POM元素解析(二)

一、parent <parent>元素包含定位此项目将从中继承的父项目所需的信息。注意&#xff1a;此元素的子元素不是插值的&#xff0c;必须作为文字值给定。 ElementTypeDescriptiongroupIdString要从中继承的父项目的组id。artifactIdString要从中继承的父项目的项目id。ver…

Python的pytest框架(1)--基本概念、入门

按基础到进阶的顺序&#xff0c;学习Python的pytest框架&#xff0c;本篇文章先讲一讲pytest的基本概念、入门使用规则。 目录 一、pytest基础知识 1、安装 2、pytest框架主要做了什么工作 二、pytest的规则约定、运行方式以及参数详解 1、编写测试用例 模块&#xff08…

SSA-LSTM多变量时序预测 基于麻雀搜索算法-长短期记忆神经网络多变量时序预测 (多输入单输出)

文章目录 效果一览文章概述订阅专栏只能获取一份代码部分源码参考资料效果一览 文章概述 SSA-LSTM多变量时序预测 基于麻雀搜索算法-长短期记忆神经网络多变量时序预测 (多输入单输出) 订阅专栏只能获取一份代码 部分源码 %

Go Plugin:动态模块的加载与问题解析_go语言加载动态库的工具(1)

先自我介绍一下&#xff0c;小编浙江大学毕业&#xff0c;去过华为、字节跳动等大厂&#xff0c;目前阿里P7 深知大多数程序员&#xff0c;想要提升技能&#xff0c;往往是自己摸索成长&#xff0c;但自己不成体系的自学效果低效又漫长&#xff0c;而且极易碰到天花板技术停滞…

百货商场用户画像描绘与价值分析

目录 内容概述数据说明实现目标技术点主要内容导入模块1.项目背景1.1 项目背景与挖掘目标 2.数据探索与预处理2.1 结合业务对数据进行探索并进行预处理2.2 将会员信息表和销售流水表关联与合并 3 统计分析3.1 分析会员的年龄构成、男女比例等基本信息3.2 分析会员的总订单占比&…

ThreadLocal和ThreadLocalHashMap

请直接百度详细介绍 -------------------------------------------------------------------------------------------------------------------------------- 1.ThreadLocalMap是Thread类里的一个局部变量 2.ThreadLocalMap是ThreadLocal类里的一个静态内部类, 3.ThreadL…

数据密集型应用系统设计 PDF 电子书(Martin Kleppmann 著)

简介 《数据密集型应用系统设计》全书分为三大部分&#xff1a; 第一部分&#xff0c;主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第 1 章即瞄准目标&#xff1a;可靠性、可扩展性与可维护性&#xff0c;如何认识这些问题以及如何达成目标。第 2 章我们比…

Weakly Supervised Audio-Visual Violence Detection 论文阅读

Weakly Supervised Audio-Visual Violence Detection 论文阅读 摘要III. METHODOLOGYA. Multimodal FusionB. Relation Modeling ModuleC. Training and Inference IV. EXPERIMENTSV. CONCLUSION阅读总结 文章信息&#xff1a; 发表于&#xff1a;IEEE TRANSACTIONS ON MULTIME…