【C 数据结构】单链表

文章目录

  • 【 1. 基本原理 】
    • 1.1 链表的节点
    • 1.2 头指针、头节点、首元节点
  • 【 2. 链表的创建 】
    • 2.0 创建1个空链表(仅有头节点)
    • 2.1 创建单链表(头插入法)*
    • 2.2 创建单链表(尾插入法)
  • 【 3. 链表插入元素 】
  • 【 4. 链表删除元素 】
  • 【 5. 链表查找元素 】
  • 【 6. 链表修改元素 】
  • 【 7. 链表输出 】
  • 【 8. 实例 - 链表元素的增删查改 】
  • 【 9. 无头节点的链表 】

本文中若未指定,则默认链表存在首元结点。

【 1. 基本原理 】

  • 与顺序表不同,链表 不限制数据的物理存储状态(存储空间是否连续 ,使用链表存储的数据元素,其 物理存储位置是随机的
  • 例如,使用链表存储 1,2,3 ,数据的物理存储状态如图所示:
  • 上图根本无法体现出各数据之间的逻辑关系。对此,链表的解决方案是,每个数据元素在存储时都配备一个指针,用于指向自己的直接后继元素:
    在这里插入图片描述
  • 数据元素随机存储,并通过指针表示数据之间逻辑关系 的存储结构就是 链式存储结构

1.1 链表的节点

  • 链表中每个数据的存储都由以下两部分组成:
    • 数据元素本身,其所在的区域称为数据域;
    • 指向直接后继元素的指针,所在的区域称为指针域;
  • 链表中存储各数据元素的结构,即 节点。如图所示:
    在这里插入图片描述
  • 也就是说, 链表实际存储的是一个一个的节点,真正的数据元素包含在这些节点中,如图所示:
    在这里插入图片描述
  • 链表中每个节点的具体实现,需要使用 C 语言中的结构体, 每个节点都是一个结构体,具体实现代码为:
    • 由于指针域中的指针要指向的也是一个节点,因此要声明为 Link 类型(这里要写成 struct Link* 的形式)。
//定义结点类型
typedef struct Node {int data;       //数据类型,你可以把int型的data换成任意数据类型,包括结构体struct等复合类型struct Node *next;          //单链表的指针域
} Node,*LinkedList;  
//Node表示结点的类型,LinkedList表示指向Node结点类型的指针类型

1.2 头指针、头节点、首元节点

  • 一个完整的链表需要由以下几部分构成:
    • 头指针:一个普通的指针,它的特点是 永远指向链表第一个节点的位置。很明显,头指针用于指明链表的位置,便于后期找到链表并使用表中的数据;
    • 节点:链表中的节点又细分为头节点、首元节点和其他节点:
      • 头节点:其实就是一个 不存任何数据的空节点,通常作为链表的第一个节点。对于链表来说,头节点不是必须的,它的作用只是为了方便解决某些实际问题;链表中有头节点时,头指针指向头节点;反之,若链表中没有头节点,则头指针指向首元节点。
      • 首元节点:由于头节点(也就是空节点)的缘故,链表中称 第一个存有数据的节点 为首元节点。首元节点只是对链表中第一个存有数据节点的一个称谓,没有实际意义;
      • 其他节点:链表中其他的节点。
  • 一个存储 {1,2,3} 的完整链表结构如图所示:
    在这里插入图片描述
  • 节点的创建,C实现:
Node *p=(Node *)malloc(sizeof(Node));//或者 Node* L = new Node;

【 2. 链表的创建 】

  • 创建一个链表需要做如下工作:
    • 声明一个头指针(如果有必要,可以声明一个头节点);
    • 创建多个存储数据的节点,在创建的过程中,要随时与其前驱节点建立逻辑关系;

2.0 创建1个空链表(仅有头节点)

  • 创建一个指向链表节点的指针,申请一块链表节点的内存,使该指针指向该块内存(若该指针指向空,表示内存申请失败,输出信息提示),最后将该指针指向的节点的指针域指向NULL空,表示该链表初始化后仅有1个节点。
Node* listinit(){Node *L;L=(Node*)malloc(sizeof(Node));      //开辟空间 if(L==NULL){                     //判断是否开辟空间失败,这一步很有必要printf("申请空间失败");exit(0);                  //开辟空间失败可以考虑直接结束程序}L->next=NULL;       //指针指向空return L;
}

2.1 创建单链表(头插入法)*

  • 先创建一个头节点,头节点的指针域指向空。插入新节点时,将新节点的指针域指向头节点的next,再将头节点的next指向该新节点。
    在这里插入图片描述
  • C 实现
//单链表的建立1,头插法建立单链表
LinkedList LinkedListCreatH(int x[],int N) {Node* L;L = (Node*)malloc(sizeof(Node));   //申请头结点空间L->next = NULL;                      //初始化一个空链表for(int i=0;i<N;++i){Node* p;p = (Node*)malloc(sizeof(Node));   //申请新的结点p->data = x[i];                     //结点数据域赋值p->next = L->next;                    //将结点插入到表头L-->|2|-->|1|-->NULLL->next = p;}return L;
}

2.2 创建单链表(尾插入法)

  • 先创建一个头节点,头节点的指针域指向空,再创建一个尾指针,尾指针先指向头节点。插入新节点时,将尾指针的next指向该新节点,再将尾指针指向该新节点,最后将尾指针的next指空。
    在这里插入图片描述
  • C实现:
//单链表的建立2,尾插法建立单链表
LinkedList LinkedListCreatT(int x[], int N) {Node* L;L = (Node*)malloc(sizeof(Node)); //申请头结点空间L->next = NULL;                  //初始化一个空链表Node* r;r = L;                          //r始终指向尾节点,开始时指向头节点for (int i = 0; i < N; ++i) {Node* p;p = (Node*)malloc(sizeof(Node));   //申请新的结点p->data = x[i];                     //结点数据域赋值r->next = p;                 //将结点插入到表头L-->|1|-->|2|-->NULLr = p;}r->next = NULL;return L;
}

【 3. 链表插入元素 】

  • 链表插入元素只需做以下两步操作,即可将新元素插入到指定的位置:
    1.将新结点的 next 指针指向插入位置后的结点;
    2.将插入位置前结点的 next 指针指向插入结点;
  • 链表插入元素的操作必须是先步骤 1,再步骤 2;反之,若先执行步骤 2 即 将插入位置前结点的 next 指针指向插入结点,除非再添加一个指针,作为插入位置后续链表的头指针,否则会导致插入位置后的这部分链表丢失,无法再实现步骤 1。
  • 例如,我们在链表 1,2,3,4 的基础上分别实现在头部、中间部位、尾部插入新元素 5,其实现过程如图所示:
    在这里插入图片描述
  • 从图中可以看出,虽然新元素的插入位置不同,但实现插入操作的方法是一致的,都是先执行步骤 1 ,再执行步骤 2。
  • C 实现:指定位置插入元素
//单链表的插入
//在链表的第i个位置插入x的元素,若位置超过链表大小,则链表不改动
LinkedList LinkedListInsert(LinkedList L, int i, int x) {Node* pre;  // pre为前驱结点pre = L;int j = 1;while (pre->next) {if (i == j++) {Node* p;  //插入的结点为pp = (Node*)malloc(sizeof(Node));p->data = x;p->next = pre->next;pre->next = p;break;}pre = pre->next;}   return L;
}

【 4. 链表删除元素 】

  • 从链表中删除指定数据元素时,实则就是将存有该数据元素的节点从链表中摘除,但作为一名合格的程序员,要对存储空间负责,对不再利用的存储空间要及时释放 。因此,从链表中删除数据元素需要进行以下 2 步操作:
    • 将要删除的节点的前一个节点的next指向要删除节点的next
    • 可选:手动释放掉要删除节点的内存。

例如,从存有 1,2,3,4 的链表中删除元素 3,则此代码的执行效果如图所示:
在这里插入图片描述

  • C 实现:删除指定元素的节点
// 删除单链表中值为x的元素
// 若有相同元素值,默认删除离表头最近的元素
// 若链表不存在x,则链表不改动
LinkedList LinkedListDelete(LinkedList L, int x) {Node* p, * pre;                   //pre为前驱结点,p为查找的结点。p = L->next;pre = L;while (p) {if (p->data == x){pre->next = p->next;  //删除操作,将其前驱next指向其后继。free(p);break;}pre = p;p = p->next;}return L;
}
  • C实现:删除指定位置的节点
//p为原链表,add为要删除元素的位置
Node *delElem(Node * p, int add)
{Node * temp = p;//遍历到被删除结点的上一个结点for (int i = 1; i < add; i++){temp = temp->next;if (temp->next == NULL){printf("没有该结点\n");return p;}}Node * del = temp->next;//单独设置一个指针指向被删除结点,以防丢失temp->next = temp->next->next;//删除某个结点的方法就是更改前一个结点的指针域free(del);//手动释放该结点,防止内存泄漏return p;
}

【 5. 链表查找元素 】

  • 从首元结点依次遍历表中节点,用被查找元素与各节点数据域中存储的数据元素进行比对,直至比对成功或遍历至链表最末端的 NULL(比对失败的标志)。
  • C 实现:查找指定值的元素位置
// 查找单链表中的元素
// p为原链表,elem表示被查找元素,函数返回被查元素的位置,若返回值为-1表示链表中不存在该元素
int selectElem(Node* p, int elem)
{//新建一个指针t,初始化为头指针 pNode* t = p;int i = 1;//由于头节点的存在,因此while中的判断为t->nextwhile (t->next){t = t->next;if (t->data == elem)return i;i++;}//程序执行至此处,表示查找失败printf("该数据不存在\n");return -1;
}

【 6. 链表修改元素 】

  • 更新链表中的元素,只需通过遍历找到存储此元素的节点,对节点中的数据域做更改操作即可。
  • C 实现:修改指定位置的元素
//add 表示更改结点在链表中的位置,newElem 为新的数据域的值
Node *amendElem(Node * p,int add,int newElem)
{Node  * temp=p;temp=temp->next;//在遍历之前,temp指向首元结点//遍历到待更新结点for (int i=1; i<add; i++) temp=temp->next;temp->elem=newElem;return p;
}
  • C 实现:修改指定元素值
//将链表中值为x的元素全都变为k。
LinkedList LinkedListReplace(LinkedList L, int x, int k) {Node* p = L->next;int i = 0;while (p) {if (p->data == x) {p->data = k;}p = p->next;}return L;
}

【 7. 链表输出 】

  • 首先创建一个链表节点的指针,指向首元结点,然后判断该指针是否指向了空,若非空,则输出该指针指向的节点的信息,然后指针指向下一个节点循环判断,直到该指针为空。
//输出单链表
void printList(LinkedList L){Node *p=L->next;int i=0;while(p){printf("第%d个元素的值为:%d\n",++i,p->data);p=p->next;}
}

【 8. 实例 - 链表元素的增删查改 】

  • 对链表中数据元素做"增删查改"的实现过程及 C 语言代码:
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>//定义结点类型
typedef struct Node
{int data;           //数据类型,可以把int型的data换成任意数据类型,包括结构体struct等复合类型struct Node* next;  //单链表的指针域
} Node, * LinkedList;//建立单链表,尾插法
LinkedList LinkedListCreatT(int x[], int N) {Node* L;L = (Node*)malloc(sizeof(Node));   //申请头结点空间L->next = NULL;                  //初始化一个空链表Node* r;r = L;                          //r始终指向终端结点,开始时指向头结点for (int i = 0; i < N; ++i) {Node* p;p = (Node*)malloc(sizeof(Node));   //申请新的结点p->data = x[i];                     //结点数据域赋值r->next = p;                 //将结点插入到表头L-->|1|-->|2|-->NULLr = p;}r->next = NULL;return L;
}// 查找单链表中的元素
// p为原链表,elem表示被查找元素,函数返回被查元素的位置,若返回值为-1表示链表中不存在该元素
int selectElem(Node* p, int elem)
{//新建一个指针t,初始化为头指针 pNode* t = p;int i = 1;//由于头节点的存在,因此while中的判断为t->nextwhile (t->next){t = t->next;if (t->data == elem)return i;i++;}//程序执行至此处,表示查找失败printf("该数据不存在\n");return -1;
}//单链表的插入
//在链表的第i个位置插入x的元素,若位置超过链表大小,则链表不改动
LinkedList LinkedListInsert(LinkedList L, int i, int x) {Node* pre;                      //pre为前驱结点pre = L;int j = 1;while (pre->next) {if (i == j++) {Node* p;  //插入的结点为pp = (Node*)malloc(sizeof(Node));p->data = x;p->next = pre->next;pre->next = p;break;}pre = pre->next;}   return L;
}// 删除单链表中值为x的元素
// 若有相同元素值,默认删除离表头最近的元素
// 若链表不存在x,则链表不改动
LinkedList LinkedListDelete(LinkedList L, int x) {Node* p, * pre;                   //pre为前驱结点,p为查找的结点。p = L->next;pre = L;while (p) {if (p->data == x){pre->next = p->next;  //删除操作,将其前驱next指向其后继。free(p);break;}pre = p;p = p->next;}return L;
}//将链表中值为x的元素全都变为k。
LinkedList LinkedListReplace(LinkedList L, int x, int k) {Node* p = L->next;int i = 0;while (p) {if (p->data == x) {p->data = k;}p = p->next;}return L;
}//输出单链表
void printList(LinkedList L) {Node* p = L->next;int i = 0;while (p) {printf("第%d个元素的值为:%d\n", ++i, p->data);p = p->next;}
}int main() {int N;printf("请输入链表的数量:");scanf("%d", &N);printf("请输入链表的元素:");int *x=new int[N];for (int i = 0; i < N; ++i)scanf("%d",&x[i]);//创建LinkedList list;list = LinkedListCreatT(x,N);printList(list);//插入 int pos;int data;printf("请输入插入数据的位置:");scanf("%d", &pos);printf("请输入插入数据的值:");scanf("%d", &data);LinkedListInsert(list, pos, data);printList(list);//查找printf("请输入查找数据的值:");scanf("%d", &data);printf("该数据在链表中的位置为%d\n",selectElem(list, data));//修改int newdata;printf("请输入修改的数据:");scanf("%d", &data);printf("请输入修改后的值:");scanf("%d", &newdata);LinkedListReplace(list, data, newdata);printList(list);//删除 printf("请输入要删除的元素的值:");scanf("%d", &data);LinkedListDelete(list, data);printList(list);return 0;
}

在这里插入图片描述
在这里插入图片描述

【 9. 无头节点的链表 】

  • 创建一个无头节点的链表,C 实现:
//创建1个有头节点的单链表
Node* LinkedListCreatN(int x[], int N) {Node* L = (Node*)malloc(sizeof(Node));L->data = x[0];L->next = NULL;Node* p = L; //p作为尾节点指针for (int i = 1; i < N; ++i) {Node *temp = (Node *) malloc(sizeof(Node));temp->data = x[i];temp->next = NULL;p->next = temp;p = temp;}return L;
}
  • 输出无头节点的单链表各个元素,C实现:
//输出单链表
void printList(LinkedList L) {Node* p = L;int i = 0;while (p) {printf("第%d个元素的值为:%d\n", ++i, p->data);p = p->next;}
}
  • 删除无头节点的单链表的指定元素,C实现:
    当删除的元素是第一个节点时,为了方便处理,这里事先申请一块内存,该内存的next指针域指向该链表的头节点,相当于作为 pre 前指针
//删除链表中第一个值为x的元素
Node*  DeleteList(Node* L, int x) {Node* temptou = (Node*)malloc(sizeof(Node));temptou->next = L;Node* pre=temptou;Node* cur=pre->next;while (cur){if (cur->data == x) {pre->next = cur->next;free(cur);break;}pre = cur;cur = cur->next;}return temptou->next;
}
  • 实例
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>//定义结点类型
typedef struct Node
{int data;           //数据类型,可以把int型的data换成任意数据类型,包括结构体struct等复合类型struct Node* next;  //单链表的指针域
} Node;//创建1个有头节点的单链表
Node* LinkedListCreatN(int x[], int N) {Node* L = (Node*)malloc(sizeof(Node));L->data = x[0];L->next = NULL;Node* p = L; //p作为尾节点指针for (int i = 1; i < N; ++i) {Node* temp = (Node*)malloc(sizeof(Node));temp->data = x[i];temp->next = NULL;p->next = temp;p = temp;}return L;
}//删除链表中第一个值为x的元素
Node*  DeleteList(Node* L, int x) {Node* temptou = (Node*)malloc(sizeof(Node));temptou->next = L;Node* pre=temptou;Node* cur=pre->next;while (cur){if (cur->data == x) {pre->next = cur->next;free(cur);break;}pre = cur;cur = cur->next;}return temptou->next;
}//输出单链表
void printList(Node* L) {Node* p = L;int i = 0;while (p){printf("第%d个元素的值为:%d\n", ++i, p->data);p = p->next;}
}int main() {int N;printf("请输入链表的元素数量:");scanf("%d", &N);printf("请输入链表的元素:");int* x = new int[N];for (int i = 0; i < N; ++i)scanf("%d", &x[i]);//创建Node* list;list = LinkedListCreatN(x, N);printList(list);//删除int data;printf("请输入要删除的元素值:");scanf("%d",&data);Node* listtemp;listtemp = DeleteList(list, data);printList(listtemp);return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625864.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】力扣OJ题:构建杨辉三角

Hello everybody!今天给大家介绍一道我认为比较经典的编程练习题&#xff0c;之所以介绍它是因为这道题涉及到二维数组的构建&#xff0c;如果用C语言动态构建二维数组是比较麻烦的&#xff0c;而用C中STL的vector<vector<int>>,就可以立马构建出来&#xff0c;这也…

Golang(一):基础、数组、map、struct

目录 hello world 变量 常量&#xff0c;iota 函数 init函数和导包过程 指针 defer 数组和动态数组 固定长度数组 遍历数组 动态数组 len 和 cap 截取 切片的追加 map 四种声明方式 遍历map 删除 查看键是否存在 结构体 声明 作为形参 方法 封装 继承…

Android Studio修改项目包名

1.第一步&#xff0c;项目结构是这样的&#xff0c;3个包名合在了一起&#xff0c;我们需要把每个包名单独展示出来 2.我们点击这个 取消选中后的包名结构是这样的&#xff0c;可以看到&#xff0c;包名的每个文件夹已经展示分开了&#xff0c;现在我们可以单独对每个包名文件夹…

智慧电网数据可视化运维云平台解决方案

智慧电力概述 智慧电力是通过采用先进的大数据、云计算、物联网、边缘计算等技术&#xff0c;实现生产信息与管理信息的智慧&#xff0c;实现人、技术、经营目标和管理方法的集成&#xff0c;是企业管理思想的一个新突破。智慧电厂建设具备智能化、一体化、可观测、可互动、自…

若依从0到1部署

服务器安装 MySQL8 Ubuntu 在 20.04 版本中&#xff0c;源仓库中 MySQL 的默认版本已经更新到 8.0&#xff0c;因此可以直接使用 apt-get 安装。 设置 apt 国内代理 打开 https://developer.aliyun.com/mirror/ 阿里云镜像站&#xff0c;找到适合自己的系统&#xff1a; 找…

比特币L2项目主网密集上线:新业态背后的挑战与机遇

随着加密货币行业的快速发展&#xff0c;比特币Layer 2&#xff08;以下简称L2&#xff09;项目的主网密集上线成为了近期的热点话题。这一潮流不仅是对比特币网络扩展的重要里程碑&#xff0c;也为新的商业模式和生态系统带来了无限可能。然而&#xff0c;随之而来的是各种挑战…

鉴源实验室丨智能网联汽车协议模糊测试技术概述

作者 | 乔琪 上海控安可信软件创新研究院工控网络安全组 来源 | 鉴源实验室 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 摘要&#xff1a;随着智能网联汽车的快速发展&#xff0c;其协议安全性和稳定性成为了关注焦点。智能网联汽车协议特点主要表现为…

Wix在国内受限?为何不使用中国版WIX自助建站,wix的国产替代工具

wix是一款知名的在线网站建站工具&#xff0c;能让用户在其网络上网站编辑器中拖放工具创建HTML5网站。用户可在他们的网站编辑器中加入额外的功能&#xff0c;例如社交网络按钮、电子商务功能、联系表格、电子报及社群论坛等。 但wix在国内不能用&#xff0c;或打开速度很慢&a…

在vue中发现一个prop新的写法在官方文档没有,查百度不行,还有什么其他方法排查不

先看图&#xff0c;最近在接手一个同事的代码&#xff0c;发现prop有这样的写法&#xff1a; 我自己查了官网&#xff0c;以及百度都没有找到这种写法。这时我灵机一动&#xff0c;想到一个方法&#xff0c;vscode有内置的typesscript&#xff0c;自然有prop类型推断&#xff0…

【文件系统】 F2FS文件系统学习

一、基本介绍 1、F2FS History F2FS&#xff08;Flash Friendly File System&#xff09;是专门为Nand Flash设计的一个日志型文件系统&#xff0c;于2012年12月合入Linux3.8内核&#xff0c;Google也在2018年&#xff08;Android P&#xff09;将其吸收到安卓原生版本中&…

算法学习——LeetCode力扣补充篇9(912. 排序数组、21. 合并两个有序链表、33. 搜索旋转排序数组、103. 二叉树的锯齿形层序遍历)

算法学习——LeetCode力扣补充篇9 912. 排序数组 912. 排序数组 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个整数数组 nums&#xff0c;请你将该数组升序排列。 示例 示例 1&#xff1a; 输入&#xff1a;nums [5,2,3,1] 输出&#xff1a;[1,2,3,5] 示例 2&…

LeetCode 179 in Python. Largest Number (最大数)

寻找最大数的逻辑简单&#xff0c;但如何对两数比较组成更大的整数是一个重点。例如示例2中如何区分3与30谁放在前面以及3与34谁放在前面是一个难点&#xff0c;本文通过采用functools中的自定义排序规则cmp_to_key()来判断上述情况&#xff0c;并给出代码实现。 示例&#xf…