【LangChain概念】了解语言链️:第2部分

一、说明

        在LangChain的帮助下创建LLM应用程序可以帮助我们轻松地链接所有内容。LangChain 是一个创新的框架,它正在彻底改变我们开发由语言模型驱动的应用程序的方式。通过结合先进的原则,LangChain正在重新定义通过传统API可以实现的极限。

        在上一篇博客中,我们详细讨论了 LangChain 中存在的模块,对其进行了修改。

        实际实施 LangChain 以构建自定义数据机器人涉及合并内存、提示模板和链,以及创建基于 Web 的应用程序。

钦迈·巴勒劳

·

二、让我们从导入开始

        导入 LangChain 和 OpenAI for LLM 部分。如果您没有任何这些,请安装它。

#    IMPORTS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS
from PyPDF2 import PdfReader
from langchain import OpenAI, VectorDBQA
from langchain.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationChainfrom langchain.document_loaders import TextLoader
# from langchain import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain import LLMChain
# from langchain import retrievers
import langchain
from langchain.chains.conversation.memory import ConversationBufferMemory

        py2PDF 用于阅读和处理 PDF。此外,还有不同类型的记忆,它们具有特定的功能要执行。我正在写这个系列的下一个博客,专门讨论记忆,所以我将在那里详细说明所有内容。ConversationBufferMemory, ConversationBufferWindowMemory

三、让我们设置环境。

        我想你知道如何获得OpenAI API密钥。但以防万一,

  1. 转到 OpenAI API 页面,
  2. 单击创建新的密钥
  3. 这将是您的 API 密钥。粘贴到下面
import os
os.environ["OPENAI_API_KEY"] = "sk-YOUR API KEY"

        使用哪种模型?达芬奇、巴贝奇、居里还是艾达?基于 GPT 3?基于 GPT 3.5 还是基于 GPT 4?关于模型有很多问题,所有模型都适用于不同的任务。很少有便宜的,很少有更准确的。我们还将在本系列的第 4 篇博客中详细介绍所有模型。

        为简单起见,我们将使用最便宜的型号“gpt-3.5-turbo”。温度是一个参数,它让我们了解答案的随机性。温度值越大,我们得到的随机答案就越多。

llm = ChatOpenAI(temperature=0,model_name="gpt-3.5-turbo")

        您可以在此处添加自己的数据。您可以添加任何格式,如PDF,文本,文档,CSV。根据您的数据格式,您可以注释/取消注释以下代码。

# Custom data
from langchain.document_loaders import DirectoryLoader
pdf_loader = PdfReader(r'Your PDF location')# excel_loader = DirectoryLoader('./Reports/', glob="**/*.txt")
# word_loader = DirectoryLoader('./Reports/', glob="**/*.docx")

        我们不能一次添加所有数据。我们将数据拆分为块并发送它以创建数据的嵌入。如果你不知道什么是嵌入,那么

        嵌入以数值向量或数组的形式捕获模型操作和生成的令牌的本质和上下文信息。这些嵌入派生自模型的参数或权重,用于编码和解码输入和输出文本。

这就是创建嵌入的方式。我从CODEBASIC截取了这些截图,这是一个学习LLM的好渠道,[来源:这里]

简单来说,

嵌入LLM是一种将文本表示为数字向量的方法。这允许语言模型理解单词和短语的含义,并执行文本分类、摘要和翻译等任务。通俗地说,嵌入是一种将单词转换为数字的方式。这是通过在大型文本语料库上训练机器学习模型来完成的。该模型学习将每个单词与唯一的数字向量相关联。这个向量表示单词的含义,以及它与其他单词的关系。

来源:官方语言链博客

让我们做与上图中表示完全相同的事情。

#Preprocessing of fileraw_text = ''
for i, page in enumerate(pdf_loader.pages):text = page.extract_text()if text:raw_text += text# print(raw_text[:100])text_splitter = CharacterTextSplitter(        separator = "\n",chunk_size = 1000,chunk_overlap  = 200,length_function = len,
)
texts = text_splitter.split_text(raw_text)

        实际上,当用户启动查询时,将在向量存储中进行搜索,并检索最合适的索引并将其传递给LLM。然后,LLM 对索引中找到的内容进行改革,以向用户提供格式化的响应。
我建议进一步深入研究向量存储和嵌入的概念,以增强您的理解。

embeddings = OpenAIEmbeddings()
# vectorstore = Chroma.from_documents(documents, embeddings)
vectorstore = FAISS.from_texts(texts, embeddings)

        嵌入直接存储在向量数据库中。有许多矢量数据库为我们工作,如松果、FAISS等。让我们在这里使用FAISS。

prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say GTGTGTGTGTGTGTGTGTG, don't try to make up an answer.
{context}
Question: {question}
Helpful Answer:"""
QA_PROMPT = PromptTemplate(template=prompt_template, input_variables=['context',"question"]
)

        您可以使用自己的提示来优化查询和答案。写完提示后,让我们将其链接到最终的链。

        让我们调用最后一个链,它将包括我们之前链接的所有内容。我们在这里使用ConversationalRetrievalChain。这有助于我们像人类一样与机器人进行对话。它会记住以前的聊天对话。

qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.8), vectorstore.as_retriever(),qa_prompt=QA_PROMPT)

        我们将使用简单的Gradio来创建Web应用程序。您可以使用流光或任何前端技术。此外,还有许多免费的部署选项可用,例如在拥抱脸或本地主机上部署,我们可以稍后再做。

# Front end web app
import gradio as gr
with gr.Blocks() as demo:gr.Markdown("## Grounding DINO ChatBot")chatbot = gr.Chatbot()msg = gr.Textbox()clear = gr.Button("Clear")chat_history = []
  def user(user_message, history)print("Type of use msg:",type(user_message))# Get response from QA chainresponse = qa({"question": user_message, "chat_history": history})# Append user message and response to chat historyhistory.append((user_message, response["answer"]))print(history)return gr.update(value=""), historymsg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)clear.click(lambda: None, None, chatbot, queue=False)############################################if __name__ == "__main__":demo.launch(debug=True)

        此代码将启动指向 Web 应用的本地链接,你直接提出问题并查看响应。同样在 IDE 中,您将看到正在维护的聊天记录。

LangChain 的快照 [图片来源:作者]

今天就够了。这是一个简单的介绍,用于链接不同的模块并使用它们来启动最终链。您可以通过扭曲不同的模块和代码来做很多事情。我想说,玩耍是研究的最高形式!!

在下一篇博客中,我将介绍 LangChain 中的记忆和模型。如何选择模型,记忆如何做出贡献,以及更多......因此,请继续关注,如果有任何建议或问题,请与我联系。

四、如果您发现这篇文章有见地

        事实证明,“慷慨使你成为一个更快乐的人”;因此,如果您喜欢这篇文章,请为它鼓掌。如果您觉得这篇文章很有见地,请在LinkedIn和媒体上关注我。您也可以订阅以在我发布文章时收到通知。让我们创建一个社区!感谢您的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/62642.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity-UGUI优化策略

界面出栈规则: 界面目录导航、策划界面回退需求造成界面套娃问题,夹带一系列层级问题,应该和策划进行友好沟通,避免界面不合理的出栈入栈规则 overdraw: 尽量减少同屏 半透明物体渲染 Unity 之 UGUI优化(…

Mass Adoption调研

MPC钱包 MPC是什么? MPC定义:Multi-Party Computation 多方计算 技术原理:MPC 钱包通过使用阈值签名方案 (TSS) 消除了单点问题 开源项目tss-lib: GitHub - bnb-chain/tss-lib: Threshold Signature Scheme, for ECDSA and EDDSA 和智能合约钱…

无涯教程-Perl - endpwent函数

描述 此功能告诉系统您不再希望使用getpwent从密码文件读取条目。在Windows下,使用Win32API::Net函数从域服务器获取信息。 语法 以下是此函数的简单语法- endpwent返回值 此函数不返回任何值。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perlwhile(($name, $pas…

【MFC】05.MFC六大机制:程序启动机制-笔记

MFC程序开发所谓是非常简单,但是对于我们逆向人员来说,如果想要逆向MFC程序,那么我们就必须了解它背后的机制,这样我们才能够清晰地逆向出MFC程序,今天这篇文章就来带领大家了解MFC的第一大机制:程序启动机…

MongoDB:Unrecognized option: storage

MongoDB一直显示 Unrecognized option: storage try ‘mongod --help’ for more information 意思是我们配置的config文件出了问题。 说明:MongoDB采用的是YAML格式,所以我们只需要稍微改改就好。 在storage前面:没有空格 下面两行最前面…

系统集成项目管理工程师好考吗?不报班能考过吗?

即使不参加培训班,只要自我控制能力还不错,也可以通过考试。中级集成考试难度不大,主要是要理解47个过程的输入输出和工具的使用,很多题目都是按照这个逻辑出的。建议可以在网上或者刷题APP上找一些资料和真题来练习,因…

UE5.2 LyraDemo源码阅读笔记(四)

上一篇(三)讲到在模式玩法UI点击Elimination进入淘汰赛模式。 UI选择点击Elimination后,触发蓝图W_HostSessionScreen的HostSession节点,有: 调用这个方法切换关卡后,会调用到LyraGameMode.cpp的 ALyraGam…

3.UE基本操作及数字人工程模块组成(UE数字人系统教程)

1.Fay-UE5数字人工程导入 2.UE数字人语音交互 3.UE基本操作及数字人工程模块组成(UE数字人系统教程) 一、ue5基本操作 1、项目文件管理 2、关卡素材编辑 在关卡上:w、s、a、d移动,鼠标右键拖动换视角。 二、数字人工程模…

【PythonRS】植被显示增强(多光谱、正射、照片等)

很多时候我们需要某个区域的正射图,虽然正射图一般都运用了匀色的算法,整体色彩比较均衡。但如果研究区内有大量的植被,这个时候植被突出显示就很有必要了。所以今天给大家分享一下使用Python对多光谱、正射影像进行植被显示增强的算法。 一、…

k8s的yaml文件管理

声明式管理方法: 1.适合于对资源的修改操作2.声明式资源管理方法依赖于资源配置清单文件对资源进行管理资源配置清单文件有两种格式:yaml(人性化,易读),json(易于api接口解析)3.对资…

内存快照:宕机后,Redis如何实现快速恢复?RDB

AOF的回顾 回顾Redis 的AOF的持久化机制。 Redis 避免数据丢失的 AOF 方法。这个方法的好处,是每次执行只需要记录操作命令,需要持久化的数据量不大。一般而言,只要你采用的不是 always 的持久化策略,就不会对性能造成太大影响。 …

伪原创神码ai怎么样【php源码】

这篇文章主要介绍了python汉化补丁包下载,具有一定借鉴价值,需要的朋友可以参考下。希望大家阅读完这篇文章后大有收获,下面让小编带着大家一起了解一下。 火车头采集ai伪原创插件截图: ** Spyder汉化(python汉化&…