【三维Dvhop定位】基于麻雀搜索算法的多通信半径和跳距加权的三维Dvhop定位算法【Matlab代码#81】

文章目录

    • 【可更换其他算法,`获取资源`请见文章第6节:资源获取】
    • 1. Dvhop定位算法
    • 2. 麻雀搜索算法
    • 3. 多通信半径和跳距加权策略
      • 3.1 多通信半径策略
      • 3.2 跳距加权策略
    • 4. 部分代码展示
    • 5. 仿真结果展示
    • 6. 资源获取


【可更换其他算法,获取资源请见文章第6节:资源获取】


1. Dvhop定位算法

根据距离矢量和 GPS定位原理,2001年,Nieuleseu等人提出了 DV-Hop传感器节点定位算法,其只包含少数锚节点,剩余节点为未知节点,需要通过定位算法来确定它们的位置,具有无需测量距离,硬件要求低等点,在硬件条件有限的WSN得到了广泛的应用。

DV-Hop算法的定位步骤如下:
(1)各锚节点向通信范围内的邻居节点广播自身的位置信息。接收节点则记录到每个锚节点的最小跳数,同时忽略来自同一个锚节点的较大的跳数信息,而后将跳数值加1转发给邻居节点。
(2)每个锚节点根据所记录的其他锚节点的坐标信息和跳数,通过式(1)估算网络平均跳距距离。
在这里插入图片描述
式中(少了z坐标),j为锚节点i数据表中的其他锚节点号,hopSij为锚节点i和j之间的跳数。
锚节点将所计算的平均跳距广播至整个网络后,未知节点仅记录所收到的第一个平均跳距,并向邻居节点转发,未知节点接收到平均跳距后,跟据所记录的跳数信息,按式(2)估算未知节点 i 到某个锚节点的距离:
在这里插入图片描述
(3)设P1(x1,y1,z1), … ,Pn(xm,ym,zm)表示m个锚节点的坐标位置,待定位节点D的位置为(x,y,z),其与标节点估计距离分别为d1, d2, … , dm,可以建立如下方程。
在这里插入图片描述
用线性方程组表示为AL= b,其中,
在这里插入图片描述

采用最小二乘法得到方程组的解为:
在这里插入图片描述
设定节点覆盖范围为100x100,总节点数为:100,信标节点数为3到30递增变化,通信半径为15、25、50,未知节点数等于总节点数减去锚节点数。(下面式子中少了z坐标)采用归一化平均定位误差作为评价指标:
在这里插入图片描述

2. 麻雀搜索算法

此处不再介绍。

3. 多通信半径和跳距加权策略

3.1 多通信半径策略

设网络通信半径为 R R R,将锚节点与邻居节点间分为 m m m级,网络中各信标节点与其邻居节点的实际距离为 d d d,跳数记为 H H H
H = { 1 m , 0 < d ≤ R m i m , ( i − 1 ) R m < d ≤ i R m 1 , ( m − 1 ) R m < d ≤ R (1) H=\begin{cases} & \frac{1}{m} , 0<d\le \frac{R}{m} \\ & \frac{i}{m} , \frac{(i-1)R}{m} <d\le \frac{iR}{m} \\ & 1 , \frac{(m-1)R}{m}<d\le R \end{cases}\tag{1} H= m1,0<dmRmi,m(i1)R<dmiR1,m(m1)R<dR(1)
经过改进后,锚节点与邻居节点的跳数值不再是整数,是更加精确的小数,与距离更接近正比关系,有效地提高了数据的精确性,减小定位误差。

3.2 跳距加权策略

在原始Dvhop定位算法中,设未知节点坐标为 D ( x , y , z ) D(x,y,z) D(x,y,z),能与该未知节点通信的锚节点为 A 1 ( x 1 , y 1 , z 1 ) , A 2 ( x 2 , y 2 , z 2 ) , . . . , A n ( x n , y n , z n ) A_{1}(x_{1},y_{1},z_{1}),A_{2}(x_{2},y_{2},z_{2}),...,A_{n}(x_{n},y_{n},z_{n}) A1(x1,y1,z1)A2(x2,y2,z2)...An(xn,yn,zn),这些锚节点的平均每跳距离为 h o p s i z e 1 , h o p s i z e 2 , . . . , h o p s i z e n hopsize_{1},hopsize_{2},...,hopsize_{n} hopsize1hopsize2...hopsizen,到 D ( x , y , z ) D(x,y,z) D(x,y,z)的跳数为 h o p 1 , h o p 2 , . . . , h o p n hop_{1},hop_{2},...,hop_{n} hop1hop2...hopn,那么 D ( x , y , z ) D(x,y,z) D(x,y,z) A 1 ( x 1 , y 1 , z 1 ) A_{1}(x_{1},y_{1},z_{1}) A1(x1,y1,z1)的距离 r i r_{i} ri为:
r i = h o p i ∗ h o p s i z e (2) r_{i}=hop_{i}*hopsize\tag{2} ri=hopihopsize(2)
由于 h o p s i z e hopsize hopsize是取离未知节点最近的锚节点的平均跳距作为未知节点到所有锚节点的平均跳距,但是实际网络中节点在不同区域的分布状况是不同的,平均每跳距离也是不同的,原始Dvhop算法用单一的平均跳距不能正确反应网络状况,误差较大。
本文用下面式子来修正未知节点平均跳距:
w i = 1 h o p i ∑ j = 1 n 1 h o p j (3) w_{i}=\frac{\frac{1}{hop_{i}} }{\sum_{j=1}^{n}\frac{1}{hop_{j}} }\tag{3} wi=j=1nhopj1hopi1(3)
h o p s i z e i = w i ∗ h o p s i z e i (4) hopsize_{i}= w_{i}*hopsize_{i}\tag{4} hopsizei=wihopsizei(4)
通过上面两个式子的处理,每个能与未知节点通信的信标节点的平均跳距都参与计算未知节点平均跳距,每个信标节点平均跳距都根据与未知节点的距离远近进行了加权处理,使得每个未知节点根据平均跳距计算自身坐标时更接近网络的真实情况。

4. 部分代码展示

%% 基于麻雀优化算法的多通信半径和跳距加权DVHop定位算法%BorderLength ----- 正方形区域的边长,单位m
%NodeAmount ----- 网络节点的个数
%BeaconAmount ----- 信标节点数
%UnAmount ----- 未知节点数
%Sxy ----- 用于存储节点的序号,横坐标,纵坐标的矩阵
%Beacon ----- 信标节点坐标矩阵
%UN ----- 未知节点坐标矩阵
%Distance ----- 未知节点到信标节点距离矩阵
%h ----- 节点间初始跳数矩阵
%X ----- 节点估计坐标初始矩阵,X = [x,y]
%R ----- 节点间的通信距离,一般为10-100m
clear;close all;clc;BorderLength = 40; %区域边界范围,200x200
NodeAmount = 100; %总的节点数200
BeaconAmount = 20; %信标节点数(锚节点)
UnAmount = NodeAmount - BeaconAmount; %未知节点数
R = 18; %通信距离%在区域范围内随机生成节点,即总节点数NodeAmount个坐标
AreaC = BorderLength.*rand(3,NodeAmount);%[x1,...,xn;y1,...,yn;];
%为每个点添加序号,如第1,2,3。放在第1行
data = [(1:NodeAmount);AreaC];
%信标坐标信息
BeaconData = data(2:4,1:BeaconAmount);%提取2,3行存放的坐标
UnKnownData = data(2:4,BeaconAmount+1:end);%提取剩下的坐标为未知节点坐标
%画图
figure
plot3(BeaconData(1,:),BeaconData(2,:),BeaconData(3,:),'r*','linewidth',1.5);%绘制信标(锚节点)
hold on
plot3(UnKnownData(1,:),UnKnownData(2,:),UnKnownData(3,:),'bo','linewidth',1.5)%绘制未知节点
grid on;
title('* 红色信标节点 蓝色未知节点')%% 原始Dvhop
[X,d]=Dvhop(BeaconAmount,UnAmount,NodeAmount,R,data,BeaconData);
%% 多通信半径和跳距加权优化的Dvhop
[X_w,d_w]=MRW_Dvhop(BeaconAmount,UnAmount,NodeAmount,R,data,BeaconData);

5. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 资源获取

可更换其他群智能优化算法,获取完整代码资源。👇👇👇👀名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/630676.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络爬虫软件学习

1 什么是爬虫软件 爬虫软件&#xff0c;也称为网络爬虫或网络蜘蛛&#xff0c;是一种自动抓取万维网信息的程序或脚本。它基于一定的规则&#xff0c;自动地访问网页并抓取需要的信息。爬虫软件可以应用于大规模数据采集和分析&#xff0c;广泛应用于舆情监测、品牌竞争分析、…

函数 基础知识

本笔记为观看 50 函数-函数的定义_哔哩哔哩_bilibili的学习笔记 1 函数概述 作用:将一段经常使用的代码封装起来&#xff0c;减少重复代码一个较大的程序&#xff0c;一般分为若干个程序块&#xff0c;每个块实现特定的功能。 2 函数的定义 eg: int max(int a,int b); {retu…

CSS:filter(滤镜)属性

用途 可以用于img标签&#xff0c;div标签等 图像&#xff0c;背景&#xff0c;边框的调整 常用属性 1. 灰度 grayscale()&#xff0c;默认是0&#xff0c;100%就是黑白 2. blux 给图像设置高斯模糊的程度&#xff0c;radius值设定高斯模糊的程序&#xff0c;表示像素点…

Eureka基础介绍和使用

目录 一.理论基础 二.父项目 2.1 新建父项目 2.2 管理依赖 三.子项目 3.1 新建子项目 3.2 注册中心Server依赖和启动类和配置文件 3.3 生产者Client 依赖和启动类和配置文件 3.5 消费者Custmer依赖和配置类、启动类和配置文件 四.心跳 五.公共资源项目 5.1新建实体…

【Qt】Qt Hello World 程序

文章目录 1、Qt Hello World 程序1.1 使用按钮实现1.1.1 使用可视化方式实现 1.1.2 纯代码方式实现 label创建堆&#xff08;内存泄漏&#xff09;或者栈问题Qt基础类&#xff08;Qstring、Qvector、Qlist&#xff09;乱码问题零散知识 1、Qt Hello World 程序 1.1 使用按钮实…

【任务调度】Apache DolphinScheduler快速入门

Apache DolphinScheduler基本概念 概念&#xff1a;分布式、去中心化、易扩展的可视化DAG工作流任务调度系统。 作用&#xff1a;解决数据处理流程中错综复杂的依赖关系&#xff0c;使调度系统在数据处理流程中开箱即用。Apache DolphinScheduler是一款开源的调度工具&#xff…

android远程更新下载apk

最近业务有涉及到&#xff0c;奈何是个app代码小白&#xff0c;遂记录一下 一&#xff1a;AndroidManifest.xml文件配置 application标签里面加上 android:networkSecurityConfig"xml/network_config" <!-- app下载更新配置--> <uses-permission andr…

HBuilder真机调试检测不到荣耀Magic UI系列(包括手机和电脑)解决办法

HBuilder真机调试检测不到荣耀Magic UI系列&#xff08;包括手机和电脑&#xff09;解决办法解决方法&#xff1a; 1.在开发人员选项中开启USB调试 如何进入开发者选项&#xff1f; 设置->关于->版本号&#xff0c;点击版本号直至出现您已处于开发者模式 2.选择USB配置…

Swift-19-基础入门

从本章开始大概用10篇左右文章介绍下Swift语言的基本用法。 简介 Objective-C作为一门比较老的语言&#xff0c; 缺少很多现代语言所具备的高级特性。Swift是目标是比C&#xff0c;C, ObjC更安全可靠&#xff0c;从而减少开发者对在应用运行时出错的代码进行调试的时间成本。本…

ARouter之kotlin build.gradle.kts

ARouter之kotlin build.gradle.kts kotlin的配置需要用到kapt 项目的build.gradle.kts plugins {id("com.android.application") version "8.1.2" apply falseid("org.jetbrains.kotlin.android") version "1.9.0" apply falseid(&…

ElasticSearch实战之项目搜索高亮

文章目录 1. 前情配置2、数据操作2.1 操作API2.2 数据入库 3. 高亮搜索3.1 方法封装3.2 高亮搜索 1. 前情配置 为满足ElasticSearch可在项目中实现搜索高亮&#xff0c;我们需要先做一些前情配置 导入ElasticSearch依赖 <dependency><groupId>org.springframewor…

解析数据科学,探索ChatGPT背后的奥秘

在当今这个由数据驱动和AI蓬勃发展的时代&#xff0c;数据科学作为一门融合多种学科的综合性领域&#xff0c;对于推动各行各业实现数字化转型升级起着至关重要的作用。近年来&#xff0c;大语言模型技术发展态势强劲&#xff0c;为数据科学的进步做出了巨大贡献。其中&#xf…