【蓝桥杯2025备赛】素数判断:从O(n^2)到O(n)学习之路

素数判断:从O( n 2 n^2 n2)到O(n)学习之路

背景:每一个初学计算机的人肯定避免不了碰到素数,素数是什么,怎么判断?

素数的概念不难理解:素数即质数,指的是在大于1的自然数中,除了1和它本身不再有其他因数的自然数。

如何判断

刚进大学时,我最开始接触的就是最简单的那种,比较容易理解,但复杂度较高,容易超时

暴力写法

#include <iostream>
using namespace std;int primes[10000];
int main()
{int cnt = 0,n=1000;for (int i = 2; i < n; i++){int temp = 0;//假定是素数for (int j = 2; j < i; j++){if (i % j == 0) { temp = 1; break; }//只要i能整除j,那肯定不是质数,temp=1标记为合数}if (!temp)primes[cnt++] = i;}for (int i = 0; i < 20; i++)cout << primes[i] << " ";
}

时间复杂度:O( n 2 n^2 n2​​)

之后有看了网上的一些写法,学了些优化的方法

比如,我们判断到 n \sqrt n n 就可以结束了,为什么可以这样呢?

下面的这个图或许可以说明这一点

在这里插入图片描述

#include <iostream>
using namespace std;int primes[10000];
int main()
{int cnt = 0, n = 1000;for (int i = 2; i <n; i++){int temp = 0;//假定是素数if (i > 2 && i % 2 == 0)continue;//大于2的偶数肯定不是素数for (int j = 2; j*j<=i; j++)//这个地方可以写成j<=sqrt(i);但调用函数会慢一点//其次,写成乘法,而尽量不写j<=i/j;,乘法比除法更快{if (i % j == 0) { temp = 1; break; }//只要i能整除j,那肯定不是质数,temp=1标记为合数}if (!temp)primes[cnt++] = i;}for (int i = 0; i < 20; i++)cout << primes[i] << " ";
}

终极大法:欧拉线性筛

时间复杂度:O( n n n​)

关于这方面的解释,我找了下知乎大佬的解释,我自己大概明白了基本原理,但并不能很好的阐述它

废话不多说,上图!!!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

img

const int N=100000;
int primes[N];//质数表,是质数的加入其中
bool st[N];//false表示素数,true为非素数
void get_primes(int N)//利用线性筛找到2~n中的质数
{int cnt=0;st[0]=true;st[1]=true;//0和1为非素数for(int i=0;i<=N;i++){if(!st[i])primes[cnt++]=i;//如果没被筛掉,是质数,假如质数表for(int j=0;i*primes[j]<=N;j++){st[i*primes[j]]=true;//用最小质因子去筛素数if(i%primes[j]==0)break;}}
}

OK,让我们来道题试试吧

X的因子链

输入正整数$ X$,求 X X X 的大于 11 的因子组成的满足任意前一项都能整除后一项的严格递增序列的最大长度,以及满足最大长度的序列的个数。

输入格式

输入包含多组数据,每组数据占一行,包含一个正整数表示 X X X

输出格式

对于每组数据,输出序列的最大长度以及满足最大长度的序列的个数。

每个结果占一行。

数据范围

1 ≤ X ≤ 2 20 1≤X≤2^{20} 1X220

输入样例:
2
3
4
10
100
输出样例:
1 1
1 1
2 1
2 2
4 6
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=(1<<20)+5;
int primes[N];bool st[N];
int minp[N];
void get_primes()//线性筛质数
{int cnt=0;for(int i=2;i<=N;i++){if(!st[i]){primes[cnt++]=i;minp[i]=i;}//记录最小质因数for(int j=0;primes[j]*i<=N;j++){st[primes[j]*i]=true;minp[primes[j]*i]=primes[j];//最小质因数if(i%primes[j]==0)break;}}
}
int main()
{   int x;get_primes();while(scanf("%d",&x)!=EOF){int k=0;int total=0;int sum[10]={0};//初始化数组while(x>1)//数的分解,用最小质因数去分解{  int t=minp[x];sum[k]=0;//我要用到的时候再重置为0,没用到的数据不为0没关系,因为遍历时数组只会遍历到k//而这k个数据在这里已经被重置后进行运算while(x%t==0){sum[k]++;total++;x/=t;}k++;}ll res=1;for(int i=2;i<=total;i++)res*=i;//总的阶乘for(int j=0;j<k;j++)for(int i=1;i<=sum[j];i++)res/=i;printf("%d %lld\n",total,res);memset(sum,0,sizeof(sum));//注意,这里开了memset会超时的,10^6的长度数组有100组数据就会运算10^8次了,容易超时}                          //当然,我们数组开到10然后重置是不会超时的,return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/630758.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OSPF星型拓扑和MGRE全连改

一&#xff0c;拓扑 二&#xff0c;要求 1&#xff0c;R6为ISP只能配置IP地址&#xff0c;R1-R5的环回为私有网段 2&#xff0c;R1/4/5为全连的MGRE结构&#xff0c;R1/2/3为星型的拓扑结构&#xff0c; 3&#xff0c;R1为中心站点所有私有网段可以互相通讯&#xff0c;私有网段…

【双指针】

目录 1. LeetCode 283. 移动零 1.1 题目描述 1.2 题目思路 1.3 实现代码 2. LeetCode 1089. 复写零 2.1 题目描述 2.2 题目思路 2.3 实现代码 3. LeetCode 202. 快乐数 3.1 题目描述 3.2 题目思路 3.3 实现代码 4. LeetCode 11. 盛水最多的容器 4.1 题目描述 …

视觉信息保真度VIF算法详细介绍

来源 算法核心思想来源该篇论文A VISUAL INFORMATION FIDELITY APPROACH TO VIDEO QUALITY ASSESSMENT;是2005年的一篇高引用文章; 是一种全参考的视频图像评价算法;在奈飞开源的视频质量评价工具vmaf中将其作为一个判断维度,具体关于vmaf介绍可以参考视频质量评价工具vmaf…

蓝桥杯2024年第十五届省赛真题-数字接龙

思路&#xff1a;DFS&#xff0c;因为输入的i&#xff0c;j的顺序导致&#xff0c;方向向量中x是行编号&#xff0c;y是列编号。方向向量可能和直觉上不同。 错的 //int dx[8]{0,1,1,1,0,-1,-1,-1}; //int dy[8]{1,1,0,-1,-1,-1,0,1}; 对的 int dx[]{-1,-1,0,1,1,1,0,-1}; int…

【多线程】定时器 | 线程池 | 实现MyTimer | 实现MyThreadPoll | 工厂模式 | 构造方法 | 参数种类

文章目录 定时器&线程池一、定时器1.标准库中的定时器2.实现定时器 二、线程池1.线程池的概念线程池&#xff1a; 2.标准库当中的线程池工厂模式 Executors 创建线程池1.自适应线程池2.固定数量线程池3.只有单个线程的线程池4.设定延迟时间后执行命令的线程池 ThreadPoolEx…

在 Linux 终端中创建目录

目录 ⛳️推荐 前言 在 Linux 中创建一个新目录 创建多个新目录 创建多个嵌套的子目录 测试你的知识 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 前言 在本系列的这一部…

OpenHarmony UI动画-lottie

简介 lottie是一个适用于OpenHarmony的动画库&#xff0c;它可以解析Adobe After Effects软件通过Bodymovin插件导出的json格式的动画&#xff0c;并在移动设备上进行本地渲染。 下载安裝 ohpm install ohos/lottieOpenHarmony ohpm 环境配置等更多内容&#xff0c;请参考如何…

windows部署pgsql

1、下载&#xff1a;Download PostgreSQL Binaries 2、创建data目录作为数据目录 3、初始化 bin目录执行命令&#xff1a; .\initdb.exe -D E:\pgsql\data -E UTF-8 --localechs -U postgres -W 输入密码直到完成 4、启动数据库 .\pg_ctl.exe -D E:\pgsql\data -l logfil…

OpenCV从入门到精通实战(四)——答题卡识别判卷系统

基于OpenCV的答题卡识别系统&#xff0c;其主要功能是自动读取并评分答题卡上的选择题答案。系统通过图像处理和计算机视觉技术&#xff0c;自动化地完成了从读取图像到输出成绩的整个流程。下面是该系统的主要步骤和实现细节的概述&#xff1a; 1. 导入必要的库 系统首先导入…

设计模式胡咧咧之策略工厂实现导入导出

策略模式&#xff08;Strategy Pattern&#xff09; 定义&#xff1a; 定义了一组算法&#xff0c;将每个算法都封装起来&#xff0c;并且使它们之间可以互换。 本质: 分离算法&#xff0c;选择实现 应用场景 何时使用 一个系统有许多类&#xff0c;而区分他们的只是他们直接…

深入探索:Facebook如何重塑社交互动

在当代社会中&#xff0c;社交互动已成为日常生活的核心组成部分。而在众多的社交媒体平台中&#xff0c;Facebook凭借其卓越的用户基础和创新的功能&#xff0c;已经成为了全球最大的社交媒体平台。本文将深入探讨Facebook如何通过其独特的特性和功能&#xff0c;重塑了人们的…

[Qt网络编程]之UDP通讯的简单编程实现

hello&#xff01;欢迎大家来到我的Qt学习系列之网络编程之UDP通讯的简单编程实现。希望这篇文章能对你有所帮助&#xff01;&#xff01;&#xff01; 本篇文章的相关知识请看我的上篇文章: http://t.csdnimg.cn/UKyeM 目录 UDP通讯 基于主窗口的实现 基于线程的实现 UDP通讯…