Meta Llama 3强势来袭:迄今最强开源大模型,性能媲美GPT-4

前言

Meta的最新语言模型Llama 3已经发布,标志着在大型语言模型(LLM)领域的一次重大突破,其性能在行业内与GPT-4相媲美。此次更新不仅提升了模型的处理能力和精确性,还将开源模型的性能推向了一个新的高度。

  • Huggingface模型下载:https://huggingface.co/meta-llama

  • AI快站模型免费加速下载:https://aifasthub.com/models/meta-llama

Llama 3 的主要亮点包括:

  • 基于超过 15T token 训练,相当于 Llama 2 数据集的 7 倍还多;

  • 支持 8K 长文本,改进的 tokenizer 具有 128K token 的词汇量,可实现更好的性能;

  • 在大量重要基准中均具有最先进性能;

  • 新能力范畴,包括增强的推理和代码能力;

  • 训练效率比 Llama 2 高 3 倍;

  • 带有 Llama Guard 2、Code Shield 和 CyberSec Eval 2 的新版信任和安全工具。

模型性能

Llama 3的发布展示了Meta在AI领域的深厚实力,其主要技术亮点包括对数据规模和模型架构的重大提升。Llama 3基于超过15T Token进行训练,相较于Llama 2的数据集扩大了七倍以上,代码数据相当于 Llama 2 的 4 倍。从而产生了迄今为止最强大的 Llama 模型,Llama 3 支持 8K 上下文长度,是 Llama 2 容量的两倍。使得模型在理解和生成语言方面达到了前所未有的水平。

模型采用了先进的128K token词汇量的tokenizer,支持高达8K的文本长度,能够处理更复杂、更长的文本序列。此外,通过实施分组查询注意力(GQA)技术,Llama 3在维持高精度的同时,显著提升了运算速度和效率。

此外,Meta 还开发了一套新的高质量人类评估数据集。该评估集包含 1800 个提示,涵盖 12 个关键用例:寻求建议、头脑风暴、分类、封闭式问答、编码、创意写作、提取、塑造角色、开放式问答、推理、重写和总结。为了防止 Llama 3 在此评估集上出现过度拟合,Meta 表示他们自己的团队也无法访问该数据集。下图显示了针对 Claude Sonnet、Mistral Medium 和 GPT-3.5 对这些类别和提示进行人工评估的汇总结果。

下图是 Llama 3 预训练模型和其他同等规模模型的比较,前者表现出 SOTA水平。

为了开发出出色的语言模型,Meta 认为创新、扩展和优化是非常重要的。因而在 Llama 3 的研发中 Meta 采用了这一设计理念,重点关注四个关键要素:模型架构、预训练数据、扩展预训练和指令微调。

基准测试和实际应用表现

在多个重要的行业基准测试中,Llama 3均展示了其领先的性能。这包括在自然语言理解、机器翻译、文本摘要和代码生成等任务上的应用。特别是在推理和代码能力方面,Llama 3带来了显著的性能提升,这得益于其在预训练和指令微调方面的创新。

在后训练过程中,Meta对模型进行了大量优化,显著降低了错误拒绝率,增强了模型响应的一致性和多样性。这使得Llama 3在实际应用中更加可靠,能够更好地适应不同用户的需求和各种复杂的查询。

面向未来的规模扩展

目前Llama 3的8B和70B参数模型已经发布,但Meta已经在准备发布更大规模的400B+参数模型。这将进一步提高模型的性能和多样性,尤其是在多模态和多语言处理方面。这些模型预计将在未来几个月内推出,进一步推动AI技术的发展边界。

激动人心的新功能和前瞻

除了基本的模型更新外,Meta也在积极开发多模态版本的Llama 3,以支持图像、视频和语音等多种数据类型的处理。这将大大扩展模型的应用范围,从传统的文本处理扩展到更广泛的AI应用场景。

此外,Meta的研究团队将发布一系列教育视频和研究论文,帮助用户和开发者深入了解Llama 3背后的技术原理和创新点。这些资料将为AI领域的研究者和实践者提供宝贵的信息和指导。

结论

Meta Llama 3的推出不仅证明了其在全球AI领域的领导地位,还预示着大型开源语言模型发展的新方向。随着技术的进步和模型性能的不断提升,Llama 3将在全球范围内对AI应用产生深远的影响,推动从简单的文本处理到复杂的多模态交互的转变。随着更多功能的陆续推出,我们有理由相信,Llama 3将在推动AI技术创新和应用实践方面发挥重要作用。

模型下载

Huggingface模型下载

https://huggingface.co/meta-llama

AI快站模型免费加速下载

https://aifasthub.com/models/meta-llama

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/631103.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机系统基础知识总结

一、计算机系统概述 计算系统可以分为硬件和软件两部分。硬件主要有中央处理器、存储器、输入和输出设备组成;软件由系统软件和应用软件组成。 冯诺依曼计算机体系:将硬件划分为:输入、输出、运算器、存储器、控制器五部分。 中央处理器&…

一文学会时序约束

主时钟约束命令/生成时钟约束命令IO输入输出延迟约束命令及效果最大最小延迟命令及作用多周期路径怎么约束什么情况设置伪路径时钟组设置的三个选项 如果不了解时序分析可以先看下下面这篇文章: 数字IC/FPGA——时序分析 目录 1.时钟约束(1)…

面试经典算法系列之二叉树17 -- 验证二叉树

面试经典算法32 - 验证二叉树 LeetCode.98 公众号:阿Q技术站 问题描述 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当…

227基于matlab的作业调度问题

基于matlab的作业调度问题。采用遗传算法,解决作业调度问题。一共三个作业,每个作业有不同的时间长度和紧急程度,超过时间会有惩罚措施。通过遗传算法计算出最好的作业安排,使得惩罚最小,获益最大。最终结果通过GUI用甘…

DevOps(七)Jenkins发布第一个流水线任务

Jenkins的流水线(Pipeline)是一种强大的工具,用于定义和管理持续集成和持续交付(CI/CD)过程。它允许你以代码的形式(即"Pipeline as Code")定义整个构建、测试和部署流程,…

SQL --索引

索引 INDEX 伪列 伪装起来的列,不容易被看见,要特意查询才能看见 ROWNUM: 是对查询结果自动生成的一组连续的自然数序号。 SELECT emp.*,ROWNUM FROM emp例题:查询emp表中,前三个员工 SELECT * FROM * from emp w…

source map 开发优化工具

什么是 Source map 简单来说 Source map 就是一个存储信息的文件,里面储存着位置信息。 Source map 英文释义:源程序映射。 位置信息:转换后的代码 对应的 转换前的代码 位置映射关系。 有了 Source map,就算线上运行的是转换…

【GoWeb框架初探————Gin篇】

1. Gin 1.1 下载相应依赖 创建go项目,在项目下建立go.mod文件(若有则跳过) 命令行运行 go get github.com/gin-gonic/gin1.2 启动一个简单Web服务 package mainimport ("github.com/gin-gonic/gin""github.com/thinkerou/…

IDEA使用SCALA

一、在IDEA中下载插件 在设置->插件中找到scala,并下载。 下载完成后重启idea 二、在idea中创建spark的RDD操作项目 新建项目选中Scala。 创建完成后为项目添加java包,这个添加的是spark安装包中jars目录下的所有jar包 然后编写RDD操作 import or…

汽车视频智能剪辑解决方案,满足用户对高品质汽车视频的追求

随着汽车智能化和互联网技术的快速发展,车载视频已经成为现代驾驶生活不可或缺的一部分。然而面对海量的行车视频,如何高效地剪辑、整理并分享这些精彩瞬间,一直是车主和汽车内容创作者们所面临的难题。美摄科技,作为领先的视频智…

JavaWeb--04YApi,Vue-cli脚手架Node.js环境搭建,创建第一个Vue项目

04 1 Yapi2 Vue-cli脚手架Node.js环境搭建配置npm的全局安装路径 3 创建项目(这个看下一篇文章吧) 1 Yapi 前后端分离中的重要枢纽"接口文档",以下一款为Yapi的接口文档 介绍:YApi 是高效、易用、功能强大的 api 管理平台&#…

【行为型模式】模板方法模式

一、模板方法模式概述 模板方法模式定义:在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。(类对象型模式) 模板方法中的基本方法是实现算法的各个步骤,是模板方法的…