【数字电路与系统】【北京航空航天大学】实验:时序逻辑设计——三色灯开关(二)、需求分析和系统设计

本次实验(一)见博客:【数字电路与系统】【北京航空航天大学】实验:时序逻辑设计——三色灯开关(一)、实验指导书

说明:本次实验的代码使用verilog编写,文章中为阅读方便,故采用matlab代码格式。

实验二、时序逻辑设计——三色灯开关(实验报告部分)

2、实验报告

2.1、需求分析

本次实验要求设计一种通过操作开关的时间控制灯光颜色的开关,该灯具含有两组LED白光灯芯和两组LED黄光灯芯,且开关的功能大致分为四种情况:
1、 如果灯具发出白光时断开开关,且在1秒之内再次闭合开关,则灯具发出日光;
2、 如果灯具发出日光时断开开关,且在1秒之内再次闭合开关,则灯具发出黄光;
3、 如果灯具发出黄光时断开开关,则再次闭合开关之后,灯具发出白光;
4、 如果开关断开的时间超过1秒,则开关闭合后,灯具发出白光。
因此可以总结出该灯具大致的工作流程为:白光——日光——黄光——白光,且时延Δt = 1秒,故可以设置cnt变量用于计时。

扩展实验要求:
开发时序逻辑电路,将按动开关的操作(“开”、“关”)以及按动开关之间的时间间隔(以
10ms为单位,进行0~127编码,分别代表0s至1.27s,超过1.27s均算作1.27s)以数码的形式“录制”下来,记录深度至少为16条操作序列(至少能保存16次操作);
按动实验板上的一个按键,可以将记录的内容用UART依次上传并显示到PC机终端上。

2.2、系统设计

2.2.1、总体设计思路

模块:按照设计需求,分为 “mode_run” 模块 & “mode_demo” 模块以及用于按键去抖的debounce模块。
由于题目要求延时一定时间后重新设定状态,故可以设置一cnt变量用于计时;使用RESET进行复位。
拓展实验:
通过Uart_ClkDiv进行时钟分频,Key进行按键消抖,Uart_Tx作为上传数据模块,time_cnt作为记录数据并依次上传模块。

2.2.2、接口设计
mode_run:
input clk (系统时钟), rst (重置);
key0 (按键0)   LOC = P2;
key1 (按键1)   LOC = P3;
NET "led[0]" LOC = P79;
NET "led[1]" LOC = P83;
NET "led[2]" LOC = P84;
NET "led[3]" LOC = P85;
NET "clk" LOC = P36;
NET "rst" LOC = P11;
NET "key0" LOC = P2;
NET "key1" LOC = P3;mode_demo:NET "light[0]" LOC = P23;
NET "light[1]" LOC = P18;
NET "light[2]" LOC = P15;
NET "light[3]" LOC = P16;
NET "light[4]" LOC = P17;
NET "light[5]" LOC = P22;
NET "light[6]" LOC = P24;
NET "clk" LOC = P36;
NET "dp" LOC = P12;
NET "com[0]" LOC = P27;
NET "com[1]" LOC = P26;
NET "key0" LOC = P2;
NET "key1" LOC = P3;
NET "rst" LOC = P11;Uart_time:
NET "Sys_CLK" LOC = P36;
NET "Key_In[0]" LOC = P32;
NET "Key_In[1]" LOC = P2;
NET "Sys_RST" LOC = P11;
NET "Sys_RST" PULLUP;
NET "Signal_Tx" LOC = P10;
2.2.3、mode_run模块

在这里插入图片描述

图 1 状态机流程图

module mode_run_1(clk,rst,key0,key1,led);input 						clk				;input							rst				;input 						key0				;input 						key1				;wire							key_0				;wire							key_1				;output reg	[3:0] 		led				;debounce instance_name0 (.clk(clk), .rst(rst), .key(key0), .key_pulse(key_0));debounce instance_name1 (.clk(clk), .rst(rst), .key(key1), .key_pulse(key_1));reg	[24:0]				cnt				;parameter C_25M       = 25'd24_999_999;//信号定义reg  	[3:0]					state_b			;//状态机参数parameter S0          = 4'b0000			;parameter S1          = 4'b0001			;parameter S2          = 4'b0011			;parameter S3          = 4'b0101			;parameter S4          = 4'b1111			;parameter S5          = 4'b0100			;parameter S6          = 4'b1100			;initial beginstate_b <= S0;led <= S0;cnt <= 25'b0;end//一段式状态机always@(posedge clk or negedge rst) beginif(!rst)	beginstate_b <= S0;led <= S0;cnt <= 25'b0;endelse beginif(key_0 == 1) cnt <= 25'b0;else cnt <= cnt + 1;if(cnt >= C_25M && led == S0) state_b <= S0;else 	state_b <= state_b;case(led)S0: beginif(key_0 == 1) begincase(state_b)S0: beginstate_b <= S1;led <= S1;endS1: beginstate_b <= S3;led <= S3;endS2: beginstate_b <= S4;led <= S4;endS3: beginstate_b <= S5;led <= S5;endS4: beginstate_b <= S6;led <= S6;endS5: beginstate_b <= S1;led <= S1;endS6: beginstate_b <= S2;led <= S2;enddefault: beginstate_b <= state_b;led <= led;endendcaseendelse beginled <= S0;endendS1: beginif(key_0 == 1) beginstate_b <= S1;led <= S0;endelse if(key_1 == 1) beginstate_b <= S2;led <= S2;endendS2: beginif(key_0 == 1) beginstate_b <= S2;led <= S0;endelse if(key_1 == 1) beginstate_b <= S1;led <= S1;endendS3: beginif(key_0 == 1) beginstate_b <= S3;led <= S0;endelse if(key_1 == 1) beginstate_b <= S4;led <= S4;endendS4: beginif(key_0 == 1) beginstate_b <= S4;led <= S0;endelse if(key_1 == 1) beginstate_b <= S3;led <= S3;endendS5: beginif(key_0 == 1) beginstate_b <= S5;led <= S0;endelse if(key_1 == 1) beginstate_b <= S6;led <= S6;endendS6: beginif(key_0 == 1) beginstate_b <= S6;led <= S0;endelse if(key_1 == 1) beginstate_b <= S5;led <= S5;endenddefault: beginstate_b <= state_b;led <= led;endendcaseendend
endmodule
2.2.4、debounce模块

该模块为防抖模块。对按键KEY进行消抖,达到输入信号稳定且有效的目的。

2.2.5、mode_demo模块
module mode_demo_1(clk,rst,key0,key1,dp,light,com);input 						clk				;input							rst				;input 						key0				;input 						key1				;wire							key_0				;wire							key_1				;output reg [1:0]			com				;output reg 					dp					;output reg [6:0]			light				;debounce instance_name0 (.clk(clk), .rst(rst), .key(key0), .key_pulse(key_0));debounce instance_name1 (.clk(clk), .rst(rst), .key(key1), .key_pulse(key_1));//信号定义reg  	[3:0]					state_b			;reg	[3:0]					state_c			;//状态机参数parameter S0          = 4'b0000			;parameter S1          = 4'b0001			;parameter S2          = 4'b0011			;parameter S3          = 4'b0101			;parameter S4          = 4'b1111			;parameter S5          = 4'b0100			;parameter S6          = 4'b1100			;//数码管译码parameter DATA0   	 = 7'b0111111  	;parameter DATA1  		 = 7'b0000110  	;parameter DATA2 		 = 7'b1011011  	;parameter DATA3		 = 7'b1001111  	;parameter DATA4   	 = 7'b1100110  	;parameter DATA5 	    = 7'b1101101  	;parameter DATA6 	    = 7'b1111101  	;parameter DATA7 	    = 7'b0000111  	;parameter DATA8 	    = 7'b1111111  	;parameter DATA9 	    = 7'b1101111  	;reg sec_pls;	//产生秒脉冲reg [25:0] sec_cnt;always@(posedge clk or negedge rst) beginif(key_0 == 1) beginsec_pls <= 1'b0;sec_cnt <= 26'b0;endelse beginsec_pls <= sec_pls;sec_cnt <= sec_cnt;endif(!rst) beginsec_pls <= 1'b0;sec_cnt <= 26'b0;endelse if(sec_cnt == 26'd50_000_000) beginsec_pls <= 1'b1;sec_cnt <= 26'b0;endelse beginsec_pls <= 1'b0;sec_cnt <= sec_cnt + 1;endendreg [6:0] sec;reg [3:0] tmp;reg [3:0] num;reg [3:0] buf0;reg [3:0] buf1;reg		 dp1;//计数器,约10ms扫描一次,用于数码管动态显示reg [16:0] cnt;always@(posedge clk or negedge rst) beginif(!rst)	cnt <= 17'b0;else if(cnt == 17'b11111111111111111)	begincnt <= 17'b0;endelse	cnt <= cnt + 1;endalways@(posedge clk or negedge rst) beginif(!rst)	beginstate_c <= S0;state_b <= S0;dp <= 0;endelse beginif(sec >= 10 && state_c == S0) state_b <= S0;else 	state_b <= state_b;case(state_c)S0: beginif(key_0 == 1) begincase(state_b)S0: beginstate_b <= S1;state_c <= S1;endS1: beginstate_b <= S3;state_c <= S3;endS2: beginstate_b <= S4;state_c <= S4;endS3: beginstate_b <= S5;state_c <= S5;endS4: beginstate_b <= S6;state_c <= S6;endS5: beginstate_b <= S1;state_c <= S1;endS6: beginstate_b <= S2;state_c <= S2;enddefault: beginstate_b <= state_b;state_c <= state_c;endendcaseendelse beginstate_b <= state_b;state_c <= S0;endendS1: beginif(key_0 == 1) beginstate_b <= S1;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S2;state_c <= S2;endendS2: beginif(key_0 == 1) beginstate_b <= S2;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S1;state_c <= S1;endendS3: beginif(key_0 == 1) beginstate_b <= S3;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S4;state_c <= S4;endendS4: beginif(key_0 == 1) beginstate_b <= S4;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S3;state_c <= S3;endendS5: beginif(key_0 == 1) beginstate_b <= S5;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S6;state_c <= S6;endendS6: beginif(key_0 == 1) beginstate_b <= S6;state_c <= S0;endelse if(key_1 == 1) beginstate_b <= S5;state_c <= S5;endenddefault: beginstate_c <= state_c;state_b <= state_b;endendcaseendif(key_0 == 1) beginsec <= 7'b0;num <= 4'b0;com <= 2'b00;light <= DATA0;endelse	sec <= sec;if(!rst) beginsec <= 7'b0;light <= DATA0;endelse if(sec_pls) beginif(sec == 7'd99) beginsec <= 7'b0;num <= 4'b0;light <= DATA0;endelse beginsec <= sec + 1;case(state_c)		//dp位表示状态S0: beginif(sec >= 7'd10)	state_b <= S0;else					state_b <= state_b;endS2: begindp1 <= ~dp1;endS4: begindp1 <= ~dp1;endS6: begindp1 <= ~dp1;endendcaseendend//显示模块if(!rst)	beginnum <= 4'b0;com <= 2'b00;endelse beginif(sec >= 0 && sec < 10) begin	//数码管显示数字buf1 <= 0;buf0 <= sec[3:0];endelse if(sec >= 10 && sec < 20) beginbuf1 <= 4'd1;tmp <= (sec - 7'd10);buf0 <= tmp[3:0];endelse if(sec >= 20 && sec < 30) beginbuf1 <= 4'd2;tmp <= sec - 7'd20;buf0 <= tmp[3:0];endelse if(sec >= 30 && sec < 40) beginbuf1 <= 4'd3;tmp <= sec - 7'd30;buf0 <= tmp[3:0];endelse if(sec >= 40 && sec < 50) beginbuf1 <= 4'd4;tmp <= sec - 7'd40;buf0 <= tmp[3:0];endelse if(sec >= 50 && sec < 60) beginbuf1 <= 4'd5;tmp <= sec - 7'd50;buf0 <= tmp[3:0];endelse if(sec >= 60 && sec < 70) beginbuf1 <= 4'd6;tmp <= sec - 7'd60;buf0 <= tmp[3:0];endelse if(sec >= 70 && sec < 80) beginbuf1 <= 4'd7;tmp <= sec - 7'd70;buf0 <= tmp[3:0];endelse if(sec >= 80 && sec < 90) beginbuf1 <= 4'd8;tmp <= sec - 7'd80;buf0 <= tmp[3:0];endelse if(sec >= 90 && sec < 100) beginbuf1 <= 4'd9;tmp <= sec - 7'd90;buf0 <= tmp[3:0];endcase(cnt[16])1'b0: begincom <= 2'b01;num <= buf0;case(state_c)S0:		dp <= 0;S1:		dp <= 1;S2:		dp <= dp1;S3:		dp <= 1;S4:		dp <= dp1;S5:		dp <= 0;S6:		dp <= 0;default:	dp <= 0;endcaseend1'b1: begincom <= 2'b10;num <= buf1;case(state_c)S0:		dp <= 0;S1:		dp <= 0;S2:		dp <= 0;S3:		dp <= 1;S4:		dp <= dp1;S5:		dp <= 1;S6:		dp <= dp1;default:	dp <= 0;endcaseendendcasecase(num)				//个位4'd0:	light <= DATA0;4'd1:	light <= DATA1;4'd2:	light <= DATA2;4'd3:	light <= DATA3;4'd4:	light <= DATA4;4'd5:	light <= DATA5;4'd6:	light <= DATA6;4'd7:	light <= DATA7;4'd8:	light <= DATA8;4'd9:	light <= DATA9;default: light <= DATA0;endcaseend
endendmodule
2.2.6、time_cnt模块
module time_cnt(Sys_CLK,Sys_RST,Idle,Key_In,send_data,send_en);input Sys_CLK;
input Sys_RST;
input Idle;
input [1:0]Key_In;
output reg [7:0] send_data;
output reg send_en;reg key0_d1;
reg key0_d2;
reg key1_d1;
reg key1_d2;
reg [7:0] time_cnt;
reg [3:0] send_cnt;reg [17:0]Div_Cnt = 18'd0;  //
reg Div_CLK_10ms = 1'b0;
reg Div_CLK_10ms_d1 = 1'b0;
reg Div_CLK_10ms_d2 = 1'b0;
reg cnt_flag;
reg send_flag;reg [7:0] send_data_reg [0:15];always@(posedge Sys_CLK or negedge Sys_RST)
beginif(!Sys_RST)beginkey0_d1 <= 1'b0;key0_d2 <= 1'b0;Div_CLK_10ms_d1 <= 1'b0;Div_CLK_10ms_d2 <= 1'b0;endelsebeginkey0_d1 <= Key_In[0];key0_d2 <= key0_d1;Div_CLK_10ms_d1 <= Div_CLK_10ms;Div_CLK_10ms_d2 <= Div_CLK_10ms_d1;end
endalways@(posedge Div_CLK_10ms or negedge Sys_RST)
beginif(!Sys_RST)beginkey1_d1 <= 1'b0;key1_d2 <= 1'b0;endelsebeginkey1_d1 <= Key_In[1];key1_d2 <= key1_d1;end
endalways@(posedge Sys_CLK)
beginif(Div_Cnt == 18'd250000)beginDiv_Cnt = 18'd0;Div_CLK_10ms = ~Div_CLK_10ms;endelseDiv_Cnt = Div_Cnt + 1'd1;
endalways@(posedge Sys_CLK or negedge Sys_RST)
beginif(!Sys_RST)begintime_cnt <= 8'd0;cnt_flag <= 1'b0;endelse if(key0_d1 && !key0_d2) //risebegintime_cnt <= 8'd0;cnt_flag <= 1'b1;endelse if(!key0_d1 && key0_d2) //fallbegintime_cnt <= 8'd0;cnt_flag <= 1'b0;endelse if(cnt_flag  && Div_CLK_10ms_d1 && !Div_CLK_10ms_d2) begintime_cnt <= time_cnt + 8'd1;endendalways@(posedge Sys_CLK  or negedge Sys_RST)beginif(!Sys_RST)beginsend_data_reg[0] <= 8'd0;send_data_reg[1] <= 8'd0;send_data_reg[2] <= 8'd0;send_data_reg[3] <= 8'd0;send_data_reg[4] <= 8'd0;send_data_reg[5] <= 8'd0;send_data_reg[6] <= 8'd0;send_data_reg[7] <= 8'd0;send_data_reg[8] <= 8'd0;send_data_reg[9] <= 8'd0;send_data_reg[10] <= 8'd0;send_data_reg[11] <= 8'd0;send_data_reg[12] <= 8'd0;send_data_reg[13] <= 8'd0;send_data_reg[14] <= 8'd0;send_data_reg[15] <= 8'd0;
//		send_data_reg[12] <= 8'd31;
//		send_data_reg[13] <= 8'd42;
//		send_data_reg[14] <= 8'd53;
//		send_data_reg[15] <= 8'd64;endelse  if(!key0_d1 && key0_d2)beginsend_data_reg[0] <= time_cnt;send_data_reg[1] <= send_data_reg[0];send_data_reg[2] <= send_data_reg[1];send_data_reg[3] <= send_data_reg[2];send_data_reg[4] <= send_data_reg[3];send_data_reg[5] <= send_data_reg[4];send_data_reg[6] <= send_data_reg[5];send_data_reg[7] <= send_data_reg[6];send_data_reg[8] <= send_data_reg[7];send_data_reg[9] <= send_data_reg[8];send_data_reg[10] <= send_data_reg[9];send_data_reg[11] <= send_data_reg[10];send_data_reg[12] <= send_data_reg[11];send_data_reg[13] <= send_data_reg[12];send_data_reg[14] <= send_data_reg[13];send_data_reg[15] <= send_data_reg[14];end
endalways@(posedge Div_CLK_10ms or negedge Sys_RST)
beginif(!Sys_RST)beginsend_data <= 8'd0;send_en <= 1'b0;send_flag <= 1'b0;endelse if(key1_d1 && !key1_d2)beginsend_data <= send_data_reg[0];send_en <= 1'b1;send_flag <= 1'b1;endelse if(send_flag && !Idle && send_en == 1'b0 && send_cnt < 4'd15)beginsend_data <= send_data_reg[send_cnt];
//		send_data <= send_data_reg[0];send_en <= 1'b1;send_flag <= 1'b1;endelse if(send_flag && !Idle &&   send_en == 1'b0 && send_cnt == 4'd15)begin
//		send_data <= send_data_reg[send_cnt];send_data <= send_data_reg[15];send_en <= 1'b1;send_flag <= 1'b0;endelsebeginsend_en <= 1'b0;end
endalways@(posedge Div_CLK_10ms or negedge Sys_RST)
beginif(!Sys_RST)beginsend_cnt <= 4'd0;endelse if(send_cnt < 4'd15 && send_en )beginsend_cnt <= send_cnt + 4'd1;end
endendmodule

其他模块都已经在用例中给出,此处不再赘述。

(未完待续)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/635901.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#使用AnimateWindow()实现动画窗体的方法:创建特殊窗体

目录 一.涉及到的知识点 &#xff08;1&#xff09; AnimateWindow函数 &#xff08;2&#xff09;操作流程 1.首先&#xff0c;定义一个用于封装AnimateWindow函数的类 2.在窗体类中使用这个方法 3.生成效果 二、实例 &#xff08;1&#xff09;Resources.Designer.cs…

C++|stack-queue-priority_queue(适配器+模拟实现+仿函数)

目录 一、容器适配器 1.1容器适配器概念的介绍 1.2stack和queue的底层结构 1.3deque容器的介绍 1.3.1deque的缺陷及为何选择他作为stack和queue的底层默认实现 二、stack的介绍和使用 2.1stack的介绍 2.2stack的使用 2.3stack的模拟实现 三、queue的介绍和使用 …

LLMs之Llama3:Llama 3的简介、安装和使用方法、案例应用之详细攻略

LLMs之Llama3&#xff1a;Llama 3的简介、安装和使用方法、案例应用之详细攻略 导读&#xff1a;2024年4月18日&#xff0c;Meta 重磅推出了Meta Llama 3&#xff0c;本文章主要介绍了Meta推出的新的开源大语言模型Meta Llama 3。模型架构 Llama 3 是一种自回归语言模型&#x…

蓝桥杯第十五界软件测试线下省赛题目分析及解决

PS 需要第十五界蓝桥杯被测系统或者功能测试模板、单元测试被测代码、自动化测试被测代码请加&#x1f427;:1940787338 备注&#xff1a;15界蓝桥杯省赛软件测试 题目1&#xff1a;功能测试 题目描述 ​ 某物流公司的货运收费标准根据重量、距离和节假日三个因素来确定。如…

2024蓝桥杯嵌入式模板代码详解

文章目录 一、STM32CubeMx配置二、LED模板代码三、LCD模板代码 一、STM32CubeMx配置 打开STM32CubeMx&#xff0c;选择【File】->【New Project】&#xff0c;进入芯片选择界面&#xff0c;搜索到蓝桥杯官方的芯片型号&#xff0c;并点击收藏&#xff0c;下次直接点击收藏就…

LeetCode 113—— 路径总和 II

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 看到树的问题一般我们先考虑一下是否能用递归来做。 假设 root 节点的值为 value&#xff0c;如果根节点的左子树有一个路径总和等于 targetSum - value&#xff0c;那么只需要将根节点的值插入到这个路径列表中…

Unity之圆环slider

一、参考文章 Unity_圆环滑动条&#xff08;圆形、弧形滑动条&#xff09;_unity弧形滑动条-CSDN博客 此滑动条拖动超过360后继续往前滑动值会从0开始&#xff0c;正常我们超过360度时不可在滑动。 二、 超过360度不可滑动问题解决 参考HTML文章制作&#xff1a; https://www.c…

嵌入式Linux开发

(17 封私信 / 1 条消息) 嵌入式Linux应用 - 搜索结果 - 知乎 (zhihu.com)

css层叠性,继承性,优先级

前言 本文概要&#xff1a;讲述css的三大特性&#xff0c;层叠&#xff0c;继承和优先级。 层叠性 描述&#xff1a;我们试想以下这种情况&#xff1a;我们定义了同一个选择器&#xff0c;但是定义的属性不同。属性有相同的也有不同的&#xff0c;那么最后我们这个页面会听谁的…

小图标还不会设计!

ICON图标设计 hello&#xff0c;我是小索奇 image-20230805225451447 你有好奇过这样的图标如何设计的吗&#xff1f; 其实非常简单&#xff0c;仅需要一行代码即可完成&#xff0c;本篇文章就带伙伴们使用&#xff0c;每天看一篇&#xff0c;简单易懂&#xff0c;日久技长~…

设计模式学习笔记 - 开源实战三(中):剖析Google Guava中用到的设计模式

概述 上篇文章&#xff0c;我通过 Google Guava 这样一个优秀的开源类库&#xff0c;讲解了如何在业务开发中&#xff0c;发现跟业务无关、可以复用的通用功能模块&#xff0c;并将它们抽离出来&#xff0c;设计成独立的类库、框架或功能组件。 本章再来学习下&#xff0c;Go…

稀碎从零算法笔记Day54-LeetCode:39. 组合总和

题型&#xff1a;数组、树、DFS、回溯 链接&#xff1a;39. 组合总和 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数…