批量规范化(batchnormalization)

µ ˆB 是小批量B的样本均值,σˆ B 是小批量B的样本标准差。应用标准化后,生成的小批量的平均
值为0和单位方差为1。由于单位方差(与其他一些魔法数)是一个主观的选择,因此我们通常包含 拉伸参数(scale)γ和偏移参数(shift)β,

请注意,γ和β是需要与其他模型参数一起学习的参数。

 “魔法参数”来规范化或调整模型的行为。这些参数通常不是通过数据或者明确的推断得出,而是根据经验、直觉或者试验进行调整的,因此被称为“魔法参数”。

 

我们在方差估计值中添加一个小的常量ϵ > 0,以确保我们永远不会尝试除以零。即使在经验方差估计值可能消失的情况下也是如此。估计值ˆ µ B 和ˆ σ B 通过使用平均值和方差的噪声(noise)估计来抵消缩放问题。乍看起来,这种噪声是一个问题,而事实上它是有益的。事实证明,这是深度学习中一个反复出现的主题。由于尚未在理论上明确的原因,

优化中的各种噪声源通常会导致更快的训练和较少的过拟合:这种变化似乎是正则化的一种形式。

噪声可以提高鲁棒性,更快训练和较少过拟合 

卷积层
同样,对于卷积层,我们可以在卷积层之后和非线性激活函数之前应用批量规范化。当卷积有多个输出通道时,我们需要对这些通道的“每个”输出执行批量规范化,每个通道都有自己的拉伸(scale)和偏移(shift)参数,这两个参数都是标量。假设我们的小批量包含m个样本,并且对于每个通道,卷积的输出具有高度p和宽度q。那么对于卷积层,我们在每个输出通道的m · p · q个元素上同时执行每个批量规范化。因此,在计算平均值和方差时,我们会收集所有空间位置的值,然后在给定通道内应用相同的均值和方差,以便在每个空间位置对值进行规范化。 

import torch
from torch import nn
from d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式if not torch.is_grad_enabled():# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。# 这里我们需要保持X的形状以便后面可以做广播运算mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下,用当前的均值和方差做标准化X_hat = (X - mean) / torch.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 缩放和移位return Y, moving_mean.data, moving_var.data

 对每一通道的所有数据进行归一化操作。

class BatchNorm(nn.Module):# num_features:完全连接层的输出数量或卷积层的输出通道数。# num_dims:2表示完全连接层,4表示卷积层def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))# 非模型参数的变量初始化为0和1self.moving_mean = torch.zeros(shape)self.moving_var = torch.ones(shape)def forward(self, X):# 如果X不在内存上,将moving_mean和moving_var# 复制到X所在显存上if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)# 保存更新过的moving_mean和moving_varY, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

 和以前一样,我们将在Fashion-MNIST数据集上训练网络。 这个代码与我们第一次训练LeNet( 6.6节)时几乎完全相同,主要区别在于学习率大得多

让我们来看看从第一个批量规范化层中学到的拉伸参数gamma和偏移参数beta

net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))
Copy to clipboard
(tensor([0.4863, 2.8573, 2.3190, 4.3188, 3.8588, 1.7942], device='cuda:0',grad_fn=<ReshapeAliasBackward0>),tensor([-0.0124,  1.4839, -1.7753,  2.3564, -3.8801, -2.1589], device='cuda:0',grad_fn=<ReshapeAliasBackward0>))

简明实现

net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
nn.Linear(84, 10))
下面,我们使用相同超参数来训练模型。
请注意,通常高级API变体运行速度快得多,因为它的代码已编译
为C++或CUDA,而我们的自定义代码由Python实现。
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

批量规范化有许多有益的副作用,主要是正则化。另一方面,”减少内部协变量偏移“的原始动机似乎
不是一个有效的解释。

2018年,MIT一个研究小组的工作认为:正则化,而不是去ICS(internal covariate shift),才是Batch Norm有效的原因。

作用:

1.缓解了梯度传递问题,使模型适应更大的学习率,加速了训练;

(/omega的奇异值或特征值大于1的话,很可能梯度爆炸或者梯度消失,每次都缩放调整,一般就不会这样了) 

应用了Batch Norm方法后,各层的输出和误差回传都经过一次缩放调整,整个模型对学习率的选择和初始化敏感度相应降低,改善了训练效果。

2.改善了饱和非线性模型不易训练的问题;

Batch Norm方法经过规范化和缩放平移,可以使输入数据,重新回到非饱和区,还可以更进一步:控制激活的饱和程度,或是非饱和函数抑制与激活的范围。

3.还起到了正则化的作用。

加入了噪点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/637487.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux关闭swap分区操作[适用于CDH报警等]

1.查看swap分区挂载路径(没卵用) swapon -s 2.设置配置文件的swap配置 echo “vm.swappiness 0” > /etc/sysctl.conf 3.设置内存中的swap状态。有时候配置文件为0&#xff0c;但集群或服务仍然使用了swap分区&#xff0c;可能原因就是内存没有同步配置 echo “0” > …

【配电网故障定位】基于二进制蝙蝠算法的配电网故障定位 33节点配电系统故障定位【Matlab代码#80】

文章目录 【获取资源请见文章第6节&#xff1a;资源获取】1. 配电网故障定位2. 二进制蝙蝠算法3. 算例展示4. 部分代码展示5. 仿真结果展示6. 资源获取 【获取资源请见文章第6节&#xff1a;资源获取】 1. 配电网故障定位 配电系统故障定位&#xff0c;即在配电网络发生故障的…

微信有关白名单IP

一、商家支付 二、公众号

深入理解与实践“git add”命令的作用

文章目录 **git add命令的作用****git add命令的基本作用****高级用法与注意事项** git add命令的作用 引言&#xff1a; 在Git分布式版本控制系统中&#xff0c;git add命令扮演着至关重要的角色&#xff0c;它是将本地工作区的文件变动整合进版本控制流程的关键步骤。本文旨…

YOLOv9改进策略 | SPPF篇 | 利用RT-DETR的AIFI模块替换SPPFELAN助力小目标检测涨点

一、本文介绍 本文给大家带来是用最新的RT-DETR模型中的AIFI模块来替换YOLOv9中的SPPFELAN。RT-DETR号称是打败YOLO的检测模型&#xff0c;其作为一种基于Transformer的检测方法&#xff0c;相较于传统的基于卷积的检测方法&#xff0c;提供了更为全面和深入的特征理解&#x…

【C++】STL-vector的使用

目录 1、什么是vector&#xff1f; 2、vector的使用 2.1 vector的定义 ​编辑 2.2 遍历修改数据 2.3 迭代器 2.4 vector空间增长问题 2.5 vector的增删查改 3、迭代器失效 3.1 会引起其底层空间改变的操作&#xff0c;都有可能是迭代器失效 3.2 指定位置元素的删除操…

判断完数(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>int main() {//初始化变量值&#xff1b;int n 0;int i 1;int j 0;int result 1;//提示用户&#xff1b;printf("请输入一个…

【Dubbo】Dubbo简单自定义链路传递traceId

需求 因为服务器内存不足&#xff0c;没有引入链路追踪的框架&#xff0c;项目使用到了Dubbo&#xff0c;所有通过self4j的MDC和Dubbo的RpcContext实现简单的traceId 的多服务模块的传递 解决思路 在第一个模块生成traceId(比如网关模块)&#xff0c;生成traceId&#xff0c…

python文件 成绩分析

‘’文件score.txt中存储了学生的考试信息,内容如下 小明,98 小刚,90 小红,91 小王,98 小刘,80 请写代码,读取文件数据,并进行如下分析 最高分和最低分分别是多少&#xff1f;得最高分的学生有几个&#xff1f; 得最低分的学生有几个平均分是多少&#xff1f; ‘’’ def rea…

【办公类-21-16】 20240410三级育婴师 344多选题(题目与答案合并word)

作品展示 背景需求&#xff1a; 前文将APP题库里的育婴师题目下载到EXCEL&#xff0c;并进行手动整理【办公类-21-14】 20240406三级育婴师 344道多选题 UIBOT下载整理-CSDN博客文章浏览阅读287次&#xff0c;点赞8次&#xff0c;收藏9次。【办公类-21-14】 20240406三级育婴师…

Spring AOP (一)

本篇主要介绍Spring AOP的基础概念和入门使用 一、AOP的基本概念 AOP是一种面向切面编程的思想&#xff0c;它与IOC并称为Spring 的两大核心思想。什么是面向切面编程呢&#xff0c;具体来说就是对一类事情进行集中统一处理。这听起来像不像前面篇章中所介绍的统一功能处理&am…

二叉树之AVL树

文章目录 1. AVL树的概念&#xff08;logN)1.1背景1.2规则 2.AVL树节点的定义3.AVL树的插入4. AVL树的旋转(重点&#xff09;4.1 新节点插入较高的右子树的右侧&#xff1a;左单璇&#xff1b;4.2 新节点插入较高左子树的左侧&#xff1a;右单璇&#xff1b;4.3&#xff08;双旋…