Spring AI Summary


版权声明

  • 本文原创作者:谷哥的小弟
  • 作者博客地址:http://blog.csdn.net/lfdfhl

在这里插入图片描述

Spring AI is a project that aims to streamline the development of AI applications by providing abstractions and reusable components that can be easily integrated into existing applications. The project is inspired by other Python projects like LangChain and LlamaIndex, but it is not a direct port of those projects. Instead, Spring AI aims to be a more general-purpose platform that can be used with a variety of programming languages.

Key Concepts

Models: Models are the core components of AI applications. They are responsible for learning from data and making predictions. Spring AI supports a variety of models, including chat models, text-to-image models, and embedding models.

Prompts: Prompts are instructions that tell a model what to do. For example, a prompt might tell a chat model to generate a conversation or a text-to-image model to generate an image from a text description.

Prompt Templates: Prompt templates are reusable patterns for prompts. They can be used to simplify the process of writing prompts and to ensure that prompts are consistent with the model’s expectations.

Embeddings: Embeddings are vectors of numbers that represent data. They can be used to represent text, images, or other types of data. Spring AI supports a variety of embedding techniques.

Tokens: Tokens are the basic units of text. They are typically words or phrases. Spring AI supports a variety of tokenization techniques.

Output Parsing: Output parsing is the process of converting a model’s output into a format that can be used by an application. Spring AI provides a variety of tools for output parsing.

Bringing Your Data to the AI Model: Spring AI provides a variety of ways to get data to an AI model. This includes support for loading data from files, databases, and APIs.

Retrieval Augmented Generation: Retrieval augmented generation is a technique for improving the quality of generated text by using a retrieval model to find relevant documents. Spring AI supports retrieval augmented generation for chat models and text-to-image models.

Benefits of Spring AI

Spring AI offers a number of benefits for developers, including:

Simplified AI application development: Spring AI provides abstractions and reusable components that make it easier to develop AI applications.

Increased developer productivity: Spring AI’s pre-built components and tools can help developers build AI applications faster.
Enhanced application flexibility: Spring AI supports a variety of models, data stores, and programming languages, which gives developers more flexibility in choosing the best solution for their needs.

Reduced development costs: Spring AI can help developers reduce development costs by simplifying the development process and providing reusable components.

Use Cases for Spring AI

Spring AI can be used for a variety of AI application development scenarios, including:

Integrating AI functionality into existing applications: Spring AI can be used to add AI functionality to existing applications, such as chatbots, recommender systems, and fraud detection systems.

Building prototypes and MVPs: Spring AI’s rapid development capabilities make it ideal for building prototypes and MVPs.
Deploying AI applications on multiple platforms: Spring AI supports deployment of AI applications on a variety of platforms, including web, mobile, and IoT devices.

Extending existing AI applications: Spring AI can be used to extend the capabilities of existing AI applications.

Conclusion

Spring AI is a powerful and easy-to-use platform that can help developers simplify AI application development and build intelligent applications. It provides a comprehensive set of features that support a wide range of AI application scenarios.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/637854.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS——前端笔记

CSS 1、选择器1.1、基础选择器1.2、复合选择器1.2.4、伪类选择器 1.3、属性选择器1.4、结构伪类选择器1.5、伪元素选择器 2、CSS的元素显示模式2.1、块元素2.2、行内元素2.3、行内块元素2.4、元素显示模式转换 3、字体属性3.1、font-family 字体3.2、font-size 字体大小3.3、fo…

【批量区域识别内容重命名】批量识别图片区域文字并重命名,批量图片部分识别内容重命文件,PDF区域识别提取重命名

我们在工作和生活中经常遇到这样的需求:比如将以下的图片区域识别进行重命名,批量识别后改成以时间和工作内容重命名,便于日后检索,快速查询 首先我们拍摄照片用到的是水印相机,这里的文字呢我们需要加个背景&#xff…

ARM与单片机有啥区别?

初学者必知:ARM与单片机到底有啥区别?1、软件方面这应该是最大的区别了。引入了操作系统。为什么引入操作系统?有什么好处嘛? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「ARM的资料从专业入门到高级教…

C语言练习——上三角矩阵

前言 今天我们来看看如何使用代码实现上三角矩阵吧。首先我们来了解一下上上三角矩阵是什么,上三角矩阵就是在矩阵从左上到右下的对角线之下的数组元素都为0的数组方矩阵,例如: 以一个三阶矩阵为例,在对角线元素之下,就…

【Hadoop】- YARN概述[6]

目录 一、YARN & Reduce 二、分布式资源调度 - YARN 1、资源调度 2、YARN的资源调度 总结 一、YARN & Reduce MapReduce是基于YARN运行的,即没有YARN “无法” 运行MapReduce程序。 二、分布式资源调度 - YARN YARN(Yet Another Resou…

springboot是什么?

可以应用于Web相关的应用开发。 选择合适的框架,去开发相关的功能,会有更高的效率。 为什么Spring Boot才是你该学的!学java找工作必会技能!在职程序员带你梳理JavaEE框架_哔哩哔哩_bilibili java工程师的必备技能 Spring是Java EE领域的企业级开发宽…

Golang汇编之通过map地址找到value的值

文章目录 背景gdb调试Go程序为什么不用dlvgdb调试Go可执行程序gdb打印地址内容 go汇编快速入门常用的寄存器和用法AMD64ARM64loong64riscv64 Go汇编常用命令及含义Go汇编和x86的区别找到map的赋值指令 Go中map的内存布局gdb中查看map结构map的存储结构map的内存布局计算bmap偏移…

【深度学习-番外1】Win10系统搭建VSCode+Anaconda+Pytorch+CUDA深度学习环境和框架全过程

专栏的老读者们都知道,以前的文章以使用MATLAB的为多。 不过后续陆续开始展开深度学习算法的应用,就会逐渐引入Python语言了(当然MATLAB的代码也会同步更新),这是由于在深度学习领域,Python应用更为广泛。…

uni-app为图片添加自定义水印(升级版)

前置内容 uni-app为图片添加自定义水印&#xff08;解决生成图片不全问题&#xff09; UI 升级 现在水印样式变成这样了&#xff1a; 代码 <template><canvas v-if"waterMarkParams.display" canvas-id"waterMarkCanvas" :style"canv…

如何使用JSONB类型在PostgreSQL中存储和查询复杂的数据结构?

文章目录 解决方案1. 创建包含JSONB列的表2. 插入JSONB数据3. 查询JSONB数据4. 创建索引以优化查询性能 示例代码结论 在PostgreSQL中&#xff0c;JSONB是一种二进制格式的JSON数据类型&#xff0c;它允许你在数据库中存储和查询复杂的JSON数据结构。与普通的JSON类型相比&…

Springboot的Test单元测试操作

Springboot的Test单元测试操作 简单总结需要操作的步骤 1&#xff0c;导入依赖 2&#xff0c;创建目录&#xff08;目录和启动类的目录保持一致&#xff09; 3&#xff0c;添加注解 4&#xff0c;写方法测试 1&#xff0c;导入依赖 <dependency><groupId>org.spri…

Ts支持哪些类型和类型运算(下)

目录 1、条件判断 &#xff08;extends &#xff1f;&#xff09; 2、推导 infer 3、联合 | 4、交叉 & 5、映射类型 1、条件判断 &#xff08;extends &#xff1f;&#xff09; ts里的条件判断&#xff0c;语法为 T extends XXX ? true : false &#xff0c;叫做…