ExpertPrompting:指导大语言模型成为杰出专家

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


论文标题:ExpertPrompting: Instructing Large Language Models to be Distinguished Experts

在这里插入图片描述

论文地址:https://arxiv.org/abs/2305.14688

作者 & 机构:Benfeng Xu,An Yang,Junyang Lin,… Yongdong Zhang,and Zhendong Mao(中科大、达摩院、北邮)

如果正确设计提示词,对齐的大语言模型(LLMs)的回答质量就能大幅提高。在这篇论文中,研究者提出了 ExpertPrompting 方法,以激发大语言模型回答问题时的专家潜能。作者首先利用 “情境学习”(In-Context Learning)技术为每条特定指令自动合成详细、定制化的专家身份描述,然后要求 LLM 根据这样的智能体背景提供答案。基于这种增强的提示策略,作者使用 GPT-3.5 生成了一套新的遵循指令的数据,并训练了一个名为 ExpertLLaMA 的具有竞争力的开源聊天助手。作者使用基于 GPT-4 的评估表明:

  • 专家数据的质量显著高于普通答案;
  • ExpertLLaMA 超越了现有的开源对手,并达到了原始 ChatGPT 能力的 96%。

所有数据和 ExpertLLaMA 模型都将在 https://github.com/OFA-Sys/ExpertLLaMA 上公开。

论文的关键要点总结如下

这篇论文的主要论点是什么?论文的主要论点是提出了一种名为 “ExpertPrompting” 的方法,通过为大语言模型(LLM)提供详细的专家身份描述,指导它们像专家一样回答问题,从而显著提高回答的质量。

作者为什么认为这是一个重要的问题?作者认为,尽管大语言模型在多种语言任务上表现出色,但用户满意度和输出质量往往取决于提示(Prompt)的设计艺术。因此,提高 LLMs 的输出质量和用户满意度是一个重要问题

作者提出了什么解决方案?作者提出了 “ExpertPrompting” 框架,该框架利用上下文学习(In-Context Learning)自动生成特定指令的详细和定制化的专家身份描述,并要求 LLM 基于这样的智能体背景提供答案。

作者如何验证他们的方法?作者通过使用 GPT-3.5 生成新的指令遵循数据集,并训练了一个名为 ExpertLLaMA 的开源聊天助手。他们使用基于 GPT4 的评估来证明 ExpertPrompting 生成的数据质量显著高于普通答案,并且 ExpertLLaMA 在性能上超过了现有的开源对手,达到了原始 ChatGPT 能力的 96%。

作者的方法有哪些局限性?论文中没有明确指出方法的局限性,但通常这类方法可能面临的局限性包括:生成的专家身份描述可能不总是完全准确或适合;对于某些特定领域或任务,可能需要更多的微调;以及可能存在的计算资源限制。

作者的方法与现有方法相比有哪些优势和不足?优势在于 ExpertPrompting 能够自动生成专家身份描述,并且可以广泛应用于不同领域或类型的指令。不足之处可能在于需要大量的指令微调数据来微调 LLM 以适应特定的专家身份。

作者的方法是否可以推广到其他领域或问题?是的,ExpertPrompting 方法的通用性和自动化特性意味着它可以推广到其他领域或问题,只要能够为特定指令生成合适的专家身份描述。

作者是否提供了足够的证据来支持他们的观点?作者通过实验设置、数据评估和模型评估提供了充分的证据来支持他们的观点。他们展示了 ExpertPrompting 在提高答案质量和聊天助手性能方面的有效性。

论文的结论是什么?论文的结论是,ExpertPrompting 是一种有效的增强提示策略,可以使 LLM 像杰出专家一样回答问题。它自动、通用且易于实施。基于这种策略,作者训练了 ExpertLLaMA,并证明了其在性能上的优势。

这篇论文对相关领域有哪些贡献?这篇论文对相关领域(如大语言模型、智能体、聊天机器人开发等)的贡献在于提出了一种新的提示策略,可以显著提高 LLM 的输出质量和聊天助手的性能。此外,它还提供了一个新的开源聊天助手模型 ExpertLLaMA,以及相关的训练数据,为未来的研究提供了有价值的资源。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/637863.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL基础篇总结

参考:黑马程序员MySQL基础视频链接 数据库基本操作 启动与停止 1.第一种方式: 1>以管理员身份运行cmd 2>在命令行窗口中输入: 启动:net start mysql80停止:net stop mysql80 2.第二种方式: 1>WinR快捷方式打开如下: 输入&#…

玩转Virtual Box虚拟机

玩转Virtual Box虚拟机 虚拟化技术和虚拟机简介 什么是虚拟化技术? 虚拟化技术是将计算机的各种硬件资源予以抽象、转换、分割、组合的一种计算机技术。虚拟化技术打破了实体结构间不可切割的障碍,从而使用户可以按照需求重新组合硬件资源&#xff0c…

Linux-缓冲区(简单理解)

1. 缓冲区是什么 缓冲区就是一段内存空间。 2. 为什么要有缓冲区 IO写入有两种: 写透模式(WT) 成本高,效率低写回模式(WB) 成本低,效率高 写透模式:每次的文件写入都要立即刷新…

【树莓派Linux内核开发】入门实操篇(虚拟机Ubuntu环境搭建+内核源码获取与配置+内核交叉编译+内核镜像挂载)

【树莓派Linux内核开发】入门实操篇(虚拟机Ubuntu环境搭建内核源码获取与配置内核交叉编译内核镜像挂载) 文章目录 【树莓派Linux内核开发】入门实操篇(虚拟机Ubuntu环境搭建内核源码获取与配置内核交叉编译内核镜像挂载)一、搭建…

JAVA日志学习(上)

JUL JUL全称Java util Logging是java原生的日志框架 基础概念 Loggers:被称为记录器,应用程序通过获取Logger对象,调用其API来来发布日志信息。Logger通常是应用程序访问日志系统的入口程序。Appenders:也被称为Handlers&#xf…

Delphi开发APP时的手势处理(缩放、旋转、平移、长按等)

在使用手机时,少不了使用手势了,像滑动,缩放,长按等, 那么如何在Delphi开发的APP中使用手势呢? Delphi自带有示例,在下面这个目录中, 可以看到ImageRotation图片旋转,I…

Spring AI Summary

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl Spring AI is a project that aims to streamline the development of AI applications by providing abstractions and reusable components that can be easily integrate…

CSS——前端笔记

CSS 1、选择器1.1、基础选择器1.2、复合选择器1.2.4、伪类选择器 1.3、属性选择器1.4、结构伪类选择器1.5、伪元素选择器 2、CSS的元素显示模式2.1、块元素2.2、行内元素2.3、行内块元素2.4、元素显示模式转换 3、字体属性3.1、font-family 字体3.2、font-size 字体大小3.3、fo…

【批量区域识别内容重命名】批量识别图片区域文字并重命名,批量图片部分识别内容重命文件,PDF区域识别提取重命名

我们在工作和生活中经常遇到这样的需求:比如将以下的图片区域识别进行重命名,批量识别后改成以时间和工作内容重命名,便于日后检索,快速查询 首先我们拍摄照片用到的是水印相机,这里的文字呢我们需要加个背景&#xff…

ARM与单片机有啥区别?

初学者必知:ARM与单片机到底有啥区别?1、软件方面这应该是最大的区别了。引入了操作系统。为什么引入操作系统?有什么好处嘛? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「ARM的资料从专业入门到高级教…

C语言练习——上三角矩阵

前言 今天我们来看看如何使用代码实现上三角矩阵吧。首先我们来了解一下上上三角矩阵是什么,上三角矩阵就是在矩阵从左上到右下的对角线之下的数组元素都为0的数组方矩阵,例如: 以一个三阶矩阵为例,在对角线元素之下,就…

【Hadoop】- YARN概述[6]

目录 一、YARN & Reduce 二、分布式资源调度 - YARN 1、资源调度 2、YARN的资源调度 总结 一、YARN & Reduce MapReduce是基于YARN运行的,即没有YARN “无法” 运行MapReduce程序。 二、分布式资源调度 - YARN YARN(Yet Another Resou…