python爬虫之scrapy框架介绍

一、Scrapy框架简介

Scrapy 是一个开源的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 可以从互联网上自动爬取数据,并将其存储在本地或在 Internet 上进行处理。Scrapy 的目标是提供更简单、更快速、更强大的方式来从网站上提取数据。

二、Scrapy的基本构成

Scrapy 框架由以下五个主要组件构成:

1. Spiders:它是 Scrapy 框架的核心部分,主要用于定义从网站上提取数据的方式。Spider 是一个 Python 类,它定义了如何从特定的网站抓取数据。

2. Items:它用于定义爬取的数据结构,Scrapy 将在爬取过程中自动创建 Item 对象,它们将被进一步处理,例如存储到数据库中。

3. Item Pipeline:它是 Scrapy 框架用于处理 Item 对象的机制。它可以执行诸如数据清洗、验证和存储等操作。

4. Downloader:它是 Scrapy 框架用于下载页面的组件之一。它正在处理网络请求,从互联网上下载页面并将其回传到 Spider 中。

5. Middleware:它是 Scrapy 框架用于处理 Spider、Downloader 和 Item Pipeline 之间交互的组件之一。中间件在这个架构中扮演了一个交换件角色,可以添加、修改或删除请求、响应和 Item 对象。

三、Scrapy框架的运行流程

Scrapy 的运行流程可以分为以下几步:

1. 下载调度器:Scrapy 框架接收 URL 并将其传递给下载调度器。下载调度器负责队列管理和针对每个 URL 的下载请求的优先级。它还可以控制并发请求的总数,从而避免对服务器的过度负载。

2. 下载器:下载器使用 HTTP 请求从互联网上下载 HTML 或其他类型的页面内容。下载器可以通过中间件拦截处理、修改或过滤请求和响应。下载器还可以将下载的数据逐步传递到爬虫中。

3. 爬虫:Spider 接收下载器提供的页面数据,并从中提取有用的信息。Spider 可以通过规则来定义如何从页面中提取数据。Spider 可以将提取的数据传递给 Item Pipeline 进行处理。

4. Item Pipeline:Item Pipeline 进行数据的清洗、验证和存储等操作。它还可以将数据存储到数据库、JSON 或 CSV 文件中。

5. 输出:Scrapy 可以输出爬取的数据到命令行、文件或 JSON 格式。输出可以用于生成各种类型的报告或分析。

四、Scrapy框架的使用

下面我们将介绍如何使用 Scrapy 框架。

1. 安装 Scrapy

Scrapy 框架可以通过 pip 安装。使用以下命令安装 Scrapy:


pip install scrapy
2. 创建 Scrapy 项目

使用以下命令创建 Scrapy 项目:


scrapy startproject project_name

其中,project_name 是项目的名称。

3. 创建 Spider

使用以下命令创建 Spider:

scrapy genspider spider_name domain_name

其中,spider_name 是 Spider 的名称,domain_name 是要爬取的域名。

在 Spider 中,我们可以定义如何从网站上提取数据。下面是一个简单的 Spider 的示例:

import scrapyclass MySpider(scrapy.Spider):name = 'myspider'start_urls = ['http://www.example.com']def parse(self, response):# 提取数据的代码pass

在这个示例中,我们定义了一个 Spider,并指定了它的名称和要爬取的 URL。我们还实现了一个 parse 方法,用于提取页面上的数据。

4. 创建 Item

在 Scrapy 中,我们可以定义自己的数据结构,称为 Item。我们可以使用 Item 类来定义数据结构。下面是一个 Item 的示例:

import scrapyclass MyItem(scrapy.Item):title = scrapy.Field()author = scrapy.Field()content = scrapy.Field()

在这个示例中,我们定义了一个 Item,并定义了三个字段:title、author 和 content。

5. 创建 Item Pipeline

在 Scrapy 中,我们可以定义 Item Pipeline 来处理 Item 对象。Item Pipeline 可以执行以下操作:

  • 清洗 Item 数据
  • 验证 Item 数据
  • 存储 Item 数据

下面是一个简单的 Item Pipeline 的示例:

class MyItemPipeline(object):def process_item(self, item, spider):# 处理 Item 的代码return item

在这个示例中,我们定义了一个 Item Pipeline,并实现了 process_item 方法。

6. 配置 Scrapy

Scrapy 有几个重要的配置选项。其中,最常见的是 settings.py 文件中的选项。下面是一个 settings.py 文件的示例:

BOT_NAME = 'mybot'
SPIDER_MODULES = ['mybot.spiders']
NEWSPIDER_MODULE = 'mybot.spiders'ROBOTSTXT_OBEY = TrueDOWNLOADER_MIDDLEWARES = {'mybot.middlewares.MyCustomDownloaderMiddleware': 543,
}ITEM_PIPELINES = {'mybot.pipelines.MyCustomItemPipeline': 300,
}

在这个示例中,我们定义了一些重要的选项,包括 BOT_NAME、SPIDER_MODULES、NEWSPIDER_MODULE、ROBOTSTXT_OBEY、DOWNLOADER_MIDDLEWARES 和 ITEM_PIPELINES。

7. 运行 Scrapy

使用以下命令运行 Scrapy:

scrapy crawl spider_name

其中,spider_name 是要运行的 Spider 的名称。

五、Scrapy框架的案例

下面我们来实现一个简单的 Scrapy 框架的案例。

1. 创建 Scrapy 项目

使用以下命令创建 Scrapy 项目:

scrapy startproject quotes

我们将项目名称设置为 quotes。

2. 创建 Spider

使用以下命令创建 Spider:

scrapy genspider quotes_spider quotes.toscrape.com

其中,quotes_spider 是 Spider 的名称,quotes.toscrape.com 是要爬取的域名。

在 Spider 中,我们定义如何从网站上提取数据。下面是一个 quotes_spider.py 文件的示例:

import scrapyclass QuotesSpider(scrapy.Spider):name = "quotes"def start_requests(self):urls = ['http://quotes.toscrape.com/page/1/','http://quotes.toscrape.com/page/2/',]for url in urls:yield scrapy.Request(url=url, callback=self.parse)def parse(self, response):for quote in response.css('div.quote'):yield {'text': quote.css('span.text::text').get(),'author': quote.css('span small::text').get(),'tags': quote.css('div.tags a.tag::text').getall(),}next_page = response.css('li.next a::attr(href)').get()if next_page is not None:yield response.follow(next_page, self.parse)

在这个示例中,我们定义了一个 Spider,并指定了它的名称。我们还实现了 start_requests 方法,用于定义要爬取的 URL。我们还实现了一个 parse 方法,用于提取页面上的所有引用。我们使用 response.css 方法选择要提取的元素,并使用 yield 语句返回一个字典对象。

3. 运行 Spider

使用以下命令运行 Spider:

scrapy crawl quotes

这个示例将下载 quotes.toscrape.com 网站上的页面,并从中提取所有引用。它将引用的文本、作者和标签存储到 MongoDB 数据库中。

六、总结

Scrapy 是一个功能强大的 Python 库和框架,用于从网站上提取数据。它为自从网站爬取数据而设计,也可以用于数据挖掘和信息处理。Scrapy 的目标是提供更简单、更快速、更强大的方式来从网站上提取数据。Scrapy 框架由 Spiders、Items、Item Pipeline、Downloader 和 Middleware 等组件构成,并具有可定制和可扩展性强的特性。使用 Scrapy 框架可以大大减少开发人员在网络爬虫开发中的时间和精力,是一个非常优秀的爬虫框架。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/64047.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

28 | Boss直聘数据分析

针对boss直聘网的招聘信息,然后分析互联网发展排名前十的城市在互联网方面职位的薪水,学历要求,经验要求,等等信息。 准备从以下几个方面进行分析: (1)各个城市的平均工资 (2)各个学历的平均工资 (3)各个岗位的平均工资 (4)不同工作经验要求的工资 (5)各个经验…

天津大数据培训机构哪家好?大数据必备知识

随着我国互联网IT行业的发展,我们步入了大数据时代,现在市场上急需大量的大数据专业人才,发展空间大,从业范围广,学习大数据专业对未来还是很有帮助的。今天小编来带大家了解一下大数据的知识和学习方式,作…

设计模式行为型——状态模式

目录 状态模式的定义 状态模式的实现 状态模式角色 状态模式类图 状态模式举例 状态模式代码实现 状态模式的特点 优点 缺点 使用场景 注意事项 实际应用 在软件开发过程中,应用程序中的部分对象可能会根据不同的情况做出不同的行为,把这种对…

4个简化IT服务台任务的ChatGPT功能

最近几个月,ChatGPT 风靡全球,这是一个 AI 聊天机器人,使用户能够生成脚本、文章、锻炼图表等。这项技术在各行各业都有无穷无尽的应用,在本文中,我们将研究这种现代技术如何帮助服务台团队增强服务交付和客户体验。 什…

优秀的 Modbus 从站(从机、服务端)仿真器、串口调试工具

文章目录 优秀的 Modbus 从站(从机、服务端)仿真器、串口调试工具主要功能软件截图 优秀的 Modbus 从站(从机、服务端)仿真器、串口调试工具 官网下载地址:http://www.redisant.cn/mse 主要功能 支持多种Modbus协议…

EVE-NG 镜像导入

目录 1.文件构成 2.导入锐捷镜像 2.1 上传模板 2.2 上传图标 2.3上传启动镜像 2.4上传配置脚本 2.5 修复文件权限 2.6 查看​ 1.文件构成 eve-ng 镜像由4个文件构成 1.启动镜像:运行时加载的磁盘镜像文件; 2.图标:在拓扑中显示的图…

[NOIP2003 普及组] 栈

题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。 栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。 栈的重要性不言自…

vue3+antv x6自定义节点样式

先大致定下节点样式,需要展示标题,输入/输出连接桩, 参考样子大概是 https://x6.antv.antgroup.com/examples/showcase/practices#class 这是根据antv x6配置 非自定义节点 图表案例 结果 数据格式大概是 nodes:[{title:鸟,id:node1,ports…

WEB集群——负载均衡集群

目录 一、 LVS-DR 群集。 1、LVS-DR工作原理 2、LVS-DR模式的特点 3、部署LVS-DR集群 3.1 配置负载调度器(192.168.186.100) 3.2 第一台web节点服务器(192.168.186.103) 3.3 第二台web节点服务器(192.168.186.…

【数据结构】复杂度

🔥博客主页:小王又困了 📚系列专栏:数据结构 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、什么是数据结构 二、什么是算法 三、算法的效率 四、时间复杂度 4.…

SpringSecurity环境搭建

AOP思想&#xff1a;面向切面编程 导入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation&quo…