使用Azure AI Search和LlamaIndex构建高级RAG应用

RAG 是一种将公司信息合并到基于大型语言模型 (LLM) 的应用程序中的常用方法。借助 RAG,AI 应用程序可以近乎实时地访问最新信息,团队可以保持对其数据的控制。

在 RAG 中,您可以评估和修改各个阶段以改进结果,它们分为三类:预检索、检索和检索后。

  1. 预检索可提高使用查询重写等技术检索的数据的质量。
  2. 检索使用混合搜索和语义排序等高级技术改进结果。
  3. 检索后侧重于优化检索信息和增强提示。

LlamaIndex 为初学者和有经验的开发人员提供了一个全面的框架和生态系统,以在其数据源上构建 LLM 应用程序。

Azure AI Search是一个信息检索平台,具有尖端的搜索技术和无缝的平台集成,专为任何规模的高性能生成式 AI 应用程序而构建。

我们在预检索中使用LlamaIndex 进行查询转换,并使用 Azure AI 搜索进行高级检索,可以生成构建更好的RAG应用程序。

预检索技术和优化查询编排

为了优化预检索,LlamaIndex 提供了查询转换,这是一项优化用户输入的强大功能。一些查询转换技术包括:

  • 路由:保持查询不变,但标识查询应用到的相关工具子集。将这些工具输出为相关选项。
  • 查询重写:保持工具不变,但以各种不同的方式重写查询,以针对相同的工具执行。
  • 子问题:将查询分解为不同工具上的多个子问题,由其元数据标识。
  • ReAct 代理工具选取:给定初始查询,确定 (1) 要选取的工具,以及 (2) 要在工具上执行的查询。

以查询重写为例:查询重写使用 LLM 将初始查询重新表述为多种形式。这使开发人员能够探索数据的不同方面,从而产生更细致和准确的响应。通过重写查询,开发人员可以生成多个查询,用于集成检索和融合检索,从而获得更高质量的检索结果。利用 Azure OpenAI,可以将初始查询分解为多个子查询。

请考虑以下初始查询:

“作者怎么了?”

如果问题过于宽泛,或者似乎不太可能在我们的语料库文本中找到直接的比较,建议将问题分解为多个子查询。

子查询:

  1. “作者最近写的一本书是什么?”
  2. “作者获得过什么文学奖吗?”
  3. “有没有即将举行的活动或对作者的采访?”
  4. “作者的背景和写作风格是什么?”
  5. “围绕作者有什么争议或丑闻吗?”

子问题查询引擎

LlamaIndex 的一大优点是,像这样的高级检索策略是内置在框架中的。例如,可以使用子问题查询引擎在一个步骤中处理上述子查询,该引擎将问题分解为更简单的问题,然后将答案组合成一个响应。

 response = query_engine.query("What happened to the author?")

  

使用 Azure AI 搜索进行检索

为了增强检索功能,Azure AI 搜索提供混合搜索和语义排名。混合搜索同时执行关键字和向量检索,并应用融合步骤(倒数秩融合 (RRF))从每种技术中选择最佳结果。

语义排名器在初始 BM25 排名或 RRF 排名结果上添加辅助排名。该二级排名使用多语言深度学习模型来推广语义上最相关的结果。

通过将“query_type”参数更新为“semantic”,可以很容易地启用语义排名器。由于语义排名是在 Azure AI 搜索堆栈中完成的,因此我们的数据显示,语义排名器与混合搜索相结合是提高相关性的最有效方法。

此外,Azure AI 搜索还支持矢量查询中的筛选器。您可以设置筛选器模式,以便在矢量查询执行之前或之后应用筛选器:

  • 预筛选模式:在查询执行前应用筛选,减少向量搜索算法查找相似内容的搜索表面积。预滤波通常比后滤波慢,但有利于召回率和精确度。
  • 筛选后模式:在查询执行后应用筛选器,缩小搜索结果范围。后过滤比选择更注重速度。

总结

通过与 LlamaIndex 的协作,可以提供更简单的方法来优化预检索和检索,以实现高级 RAG应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/641463.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web3钱包开发获取测试币-Base Sepolia(二)

Web3钱包开发获取测试币-Base Sepolia(二) ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/b0c0ac86b04a496087471388532bc54a.png) 基于上篇 Web3钱包开发获取测试币-Polygon Mumbai(一) :https://suwu150.blog.csdn.net/article/details/137949473 我…

Git 仓库内容操作

Git 仓库内容操作 | CoderMast编程桅杆Git 仓库内容操作 添加文件到暂存区 使用如下指令将工作区的文件添加到暂存区,告诉 Git 在下次 commit 时哪些文件做出了修改。 commit 指令详看后续 添加一个或多个文件到暂存区: 添加指定目录到暂存区 添加当前目…

使用 ArcGIS 对洪水预测进行建模

第一步 — 下载数据 所有数据均已包含在 Esri 提供的项目压缩文件中。我将创建一个名为“Stowe_Hydrology.gdb”的新地理数据库,在其中保存这些数据以及创建的所有后续图层。 1-0。斯托市边界 斯托城市边界是佛蒙特州地理信息中心提供的矢量要素类面。我将这一层称为“Stow…

2018年华三杯山东省赛决赛实验

2018年华三杯山东省赛决赛实验 拓扑图 配置需求 请考生根据以下配置需求在 HCL中的设备上进行相关配置。 网络设备虚拟化 数据中心交换机需要实现虚拟化。支持的虚拟化技术 IRF,所配置的参数要求如下: 链形堆叠,IRF Domain 值为 10; IRF1的 member ID 为 1,IRF2的 member …

【MySQL】Linux环境下MySQL基本操作

目录 一、登录进入MySQL 二、MySQL数据库的查看、创建、删除、重命名、拷贝操作 三、数据库下表的创建、删除、查看、修改(增加、删除、更新字段/列,修改字段/列名) 四、表中数据的插入、删除、查找、更新 一、登录进入MySQL mysql -u u…

Spring的过滤器、拦截器、切面区别及案例分析

Spring的过滤器、拦截器、切面 三者的区别,以及对应案例分析 一、三者的实现方式 1.1 过滤器 xxxFilter 过滤器的配置比较简单,直接实现Filter接口即可,也可以通过WebFilter注解实现对特定URL的拦截,Filter接口中定义了三个方法…

Java 网络编程之TCP(一):基于BIO

环境: jdk 17 IntelliJ IDEA 2023.1.1 (Ultimate Edition) Windows 10 专业版 22H2 TCP:面向连接的,可靠的数据传送协议 Java中的TCP网络编程,其实就是基于常用的BIO和NIO来实现的,本文先讨论BIO; BIO…

【STM32+HAL+Proteus】系列学习教程---RS485总线(收发仿真实现)

实现目标 1、掌握UART/USART/RS485等几个常见概念的区别 2、掌握RS485的逻辑电平、硬件接线等基础知识 3、具体实现目标:1、利用两个单片机组成RS485通信网络;2、两个单片机之间能实现正常收发数据。 一、串口、RS485等之间的关系 串口:是…

计算机网络学习day02|HTTP协议

目录 一、HTTP报文格式长什么样?是如何分割的? 请求行 状态行 头部字段 常用头字段 小结 二、HTTP提供了哪些方法?GET和POST的区别是什么? 1.HTTP有哪些方法 2.GET/HEAD 3.PSOT/PUT 小结 三、URI和URL URI 的格式 U…

『FPGA通信接口』串行通信接口-IIC(2)EEPROM读写控制器

文章目录 1.EEPROM简介2.AT24C04简介3.逻辑框架设计4.随机读写时序5.仿真代码与仿真结果分析6.注意事项7.效果8.传送门 1.EEPROM简介 EEPROM (Electrically Erasable Programmable read only memory) 是指带电可擦可编程只读存储器。是一种掉电后数据不丢失的存储芯片。在嵌入…

Leetcode 119 杨辉三角 II

目录 一、问题描述二、示例及约束三、代码方法一:递推方法二:线性递推 四、总结 一、问题描述 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。   在「杨辉三角」中,每个数是它左上方和右上方的数的和。   自我…

【后端】python2和python3的安装与配置

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、python是什么二、python环境的安装与配置Python 2的安装与配置Python 3的安装与配置注意事项 三、总结 前言 随着开发语言及人工智能工具的普及&#xff0…