数值分析复习:Richardson外推和Romberg算法

文章目录

    • Richardson外推
    • Romberg(龙贝格)算法

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

本节继续考虑数值积分问题

Richardson外推

命题:复合梯形公式的另一形式
f ∈ C ∞ [ a , b ] f\in C^{\infty}[a,b] fC[a,b],记 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx ,将复合梯形公式记为
T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T(h)=2hi=0n1[f(xi)+f(xi+1)]

T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

其中 α l ( l = 1 , 2 , … ) \alpha_l(l=1,2,\dots) αl(l=1,2,) h h h 无关

证明
x i + 1 2 = x i + x i + 1 2 , i = 0 , 1 , … , n − 1 x_{i+\frac{1}{2}}=\frac{x_i+x_{i+1}}{2},i=0,1,\dots,n-1 xi+21=2xi+xi+1,i=0,1,,n1

考虑 f ( x ) f(x) f(x) x = x i + 1 2 x=x_{i+\frac{1}{2}} x=xi+21 处的Taylor展开公式
f ( x ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( x − x i + 1 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( x − x i + 1 2 ) 2 + ⋯ f(x)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(x-x_{i+\frac{1}{2}})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(x-x_{i+\frac{1}{2}})^2+\cdots f(x)=f(xi+21)+f(xi+21)(xxi+21)+2!f′′(xi+21)(xxi+21)2+

若对上述 Taylor 公式代入 x = x i , x = x i + 1 x=x_{i},x=x_{i+1} x=xi,x=xi+1,则得
f ( x i + 1 ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) h 2 + f ′ ′ ( x i + 1 2 ) 2 ! ( h 2 ) 2 + ⋯ f(x_{i+1})=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})\frac{h}{2}+\frac{f''(x_{i+\frac{1}{2}})}{2!}(\frac{h}{2})^2+\cdots f(xi+1)=f(xi+21)+f(xi+21)2h+2!f′′(xi+21)(2h)2+ f ( x i ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( − h 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( − h 2 ) 2 + ⋯ f(x_i)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(-\frac{h}{2})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(-\frac{h}{2})^2+\cdots f(xi)=f(xi+21)+f(xi+21)(2h)+2!f′′(xi+21)(2h)2+

两式加和,得到
f ( x i ) + f ( x i + 1 ) 2 = f ( x i + 1 2 ) + h 2 8 f ′ ′ ( x i + 1 2 ) + ⋯ \frac{f(x_i)+f(x_{i+1})}{2}=f(x_{i+\frac{1}{2}})+\frac{h^2}{8}f''(x_{i+\frac{1}{2}})+\cdots 2f(xi)+f(xi+1)=f(xi+21)+8h2f′′(xi+21)+

等式两端求和,乘以 h h h 得到
T ( h ) = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 8 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (1) T(h)=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}})+\frac{h^3}{8}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 1 T(h)=hi=0n1f(xi+21)+8h3i=0n1f′′(xi+21)+(1)

另一方面,对Taylor公式从 x i x_i xi x i + 1 x_{i+1} xi+1 进行积分,得到
∫ x i x i + 1 f ( x ) d x = h ⋅ f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) 2 [ ( h 2 ) 2 − ( − h 2 ) 2 ] + f ′ ′ ( x i + 1 2 ) 6 [ ( h 2 ) 3 − ( − h 2 ) 3 ] + ⋯ \int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\cdot f(x_{i+\frac{1}{2}})+\frac{f'(x_{i+\frac{1}{2}})}{2}[(\frac{h}{2})^2-(-\frac{h}{2})^2]+\frac{f''(x_{i+\frac{1}{2}})}{6}[(\frac{h}{2})^3-(-\frac{h}{2})^3]+\cdots xixi+1f(x)dx=hf(xi+21)+2f(xi+21)[(2h)2(2h)2]+6f′′(xi+21)[(2h)3(2h)3]+

等式两端求和得

I = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) d x = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (2) I=\sum\limits_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}}) +\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}}) +\cdots\tag 2 I=i=0n1xixi+1f(x)dx=hi=0n1f(xi+21)+24h3i=0n1f′′(xi+21)+(2)

结合(1)(2)式,可得
T ( h ) = I + h 3 12 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (3) T(h)=I+\frac{h^3}{12}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 3 T(h)=I+12h3i=0n1f′′(xi+21)+(3)

类似(2)式的推导,可得
∫ a b f ′ ′ ( x ) d x = h ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ \int_a^bf''(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots abf′′(x)dx=hi=0n1f′′(xi+21)+24h3i=0n1f(4)(xi+21)+

结合 ∫ a b f ′ ′ ( x ) d x = f ′ ( b ) − f ′ ( a ) \int_a^bf''(x)\mathrm{d}x=f'(b)-f'(a) abf′′(x)dx=f(b)f(a),可将(3)式化为
T ( h ) = I + α 1 h 2 + h 5 c 4 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ T(h)=I+\alpha_1h^2+h^5c_4\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots T(h)=I+α1h2+h5c4i=0n1f(4)(xi+21)+

重复上述操作,考虑 ∫ a b f ( 4 ) ( x ) d x \int_a^bf^{(4)}(x)\mathrm{d}x abf(4)(x)dx,消去 h 5 h^5 h5 的项,得到 h 4 h^4 h4 的项,继续重复操作,可得
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

定义:Richardson外推
从低阶精度格式的截断误差的渐近展开式出发,做简单线性计算从而得到高阶精度格式的方法称为Richardson外推

例:
考虑复合梯形公式 T ( h ) T(h) T(h) 满足的式子
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

此时截断误差量级为 O ( h 2 ) O(h^{2}) O(h2)

取步长为 h 2 \frac{h}{2} 2h,则有
T ( h 2 ) = I + α 1 h 2 4 + α 2 h 4 16 + ⋯ + α l h 2 l 2 2 l + ⋯ T(\frac{h}{2})=I+\alpha_1\frac{h^2}{4}+\alpha_2\frac{h^4}{16}+\cdots+\alpha_l\frac{h^{2l}}{2^{2l}}+\cdots T(2h)=I+α14h2+α216h4++αl22lh2l+

结合这两个式子,消去 h 2 h^{2} h2项,得
4 T ( h 2 ) − T ( h ) 3 = I − 1 4 α 2 h 4 + ⋯ + α l 3 ( 1 2 2 l − 1 ) h 2 l + ⋯ \frac{4T(\frac{h}{2})-T(h)}{3}=I-\frac{1}{4}\alpha_2h^4+\cdots+\frac{\alpha_l}{3}(\frac{1}{2^{2l}}-1)h^{2l}+\cdots 34T(2h)T(h)=I41α2h4++3αl(22l11)h2l+
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h),且
T 1 ( h ) = I + β 2 h 4 + β 3 h 6 + ⋯ + β l h 2 l + ⋯ T_1(h)=I+\beta_2h^4+\beta_3h^6+\cdots+\beta^lh^{2l}+\cdots T1(h)=I+β2h4+β3h6++βlh2l+
若用 T 1 ( h ) T_1(h) T1(h) 估计 I I I ,则截断误差量级提高到 O ( h 4 ) O(h^{4}) O(h4)
类似地,可继续做……

注:只要截断误差可表示为 h h h 的幂级数,均可使用 Richardson外推提高精度

Romberg(龙贝格)算法

在上述对复合梯形公式的截断误差进行Richardson外推的过程中,记复合梯形公式 T 0 ( h ) = T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T_0(h)=T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T0(h)=T(h)=2hi=0n1[f(xi)+f(xi+1)]

加速一次(即进行一次Richardson外推)后的估计式记为
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h)

记加速 n n n 次的估计式为 T n ( h ) T_n(h) Tn(h),则有递推式
T n ( h ) = 4 n 4 n − 1 T n − 1 ( h 2 ) − 1 4 n − 1 T n − 1 ( h ) T_n(h)=\frac{4^n}{4^n-1}T_{n-1}(\frac{h}{2})-\frac{1}{4^n-1}T_{n-1}(h) Tn(h)=4n14nTn1(2h)4n11Tn1(h)

若记 T m ( k ) = T m ( h 2 k ) , k = 0 , 1 , 2 , … T_m^{(k)}=T_m(\frac{h}{2^k}),k=0,1,2,\dots Tm(k)=Tm(2kh),k=0,1,2,,则有递推式
T n ( k ) = 4 n 4 n − 1 T n − 1 ( k + 1 ) − 1 4 n − 1 T n − 1 ( k ) T_n^{(k)}=\frac{4^n}{4^n-1}T_{n-1}^{(k+1)}-\frac{1}{4^n-1}T_{n-1}^{(k)} Tn(k)=4n14nTn1(k+1)4n11Tn1(k)

定理:
设被积函数 f ( x ) f(x) f(x) 充分光滑

  1. lim ⁡ k → ∞ T m ( k ) = I \lim\limits_{k\to\infty}T_m^{(k)}=I klimTm(k)=I
  2. lim ⁡ m → ∞ T m ( k ) = I \lim\limits_{m\to\infty}T_m^{(k)}=I mlimTm(k)=I

注:证明略去,第一个结论说明当节点数目无穷多时, T m ( k ) T_m^{(k)} Tm(k) 收敛于准确的积分值;第二个结论说明随着Richardson外推的进行, T m ( k ) T_m^{(k)} Tm(k) 也收敛于准确的积分值

上述递推式和收敛定理给出了如下的Romberg算法

定义:Romberg算法
对预先给定的精度 ε \varepsilon ε,求 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx 的近似值,算法如下:

初始取 k = 0 , m = 0 , h = b − a k=0,m=0,h=b-a k=0,m=0,h=ba

  1. 代入梯形公式,求 T 0 ( k ) ( k = 0 , 1 , 2 , … ) T_0^{(k)}(k=0,1,2,\dots) T0(k)(k=0,1,2,)
  2. 加速一次,由递推公式求 T 1 ( k ) T_1^{(k)} T1(k)
  3. 直至 ∣ T k ( 0 ) − T k − 1 ( 0 ) ∣ < ε |T_k^{(0)}-T_{k-1}^{(0)}|<\varepsilon Tk(0)Tk1(0)<ε,则取 T k ( 0 ) ≈ I T_{k}^{(0)}\approx I Tk(0)I

注:具体求解顺序如下表

在这里插入图片描述

参考书籍:《数值分析》李庆扬 王能超 易大义 编

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/641560.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海外社媒营销:创新内容与互动形式,提升用户参与和品牌认知

在当今数字化时代&#xff0c;海外社交媒体已成为企业推广品牌、吸引用户关注和建立品牌认知的重要渠道之一。然而&#xff0c;随着竞争的加剧和用户对内容的日益苛刻要求&#xff0c;企业需要不断创新&#xff0c;提供独特而吸引人的内容形式&#xff0c;以吸引海外用户的关注…

你们项目日志是如何处理的???

ELK日志采集系统 1.什么是ELK ELK 是一套流行的数据搜索、分析和可视化解决方案&#xff0c;由三个开源项目组成&#xff0c;每个项目的首字母合起来形成了“ELK”这一术语&#xff1a; Elasticsearch (ES): Elasticsearch 是一个基于 Apache Lucene 构建的分布式、实时搜索与…

kafka 命令行使用 消息的写入和读取 quickstart

文章目录 Intro命令日志zookeeper serverkafka servercreate topic && describe topic Intro Kafka在大型系统中可用作消息通道&#xff0c;一般是用程序语言作为客户端去调用kafka服务。 不过在这之前&#xff0c;可以先用下载kafka之后就包含的脚本文件等&#xff0…

揭秘APP广告变现的逻辑

揭秘APP广告变现的5大神器 在当今这个移动应用市场竞争日益激烈的时代&#xff0c;APP广告变现已经成为了开发者们无法回避的议题。尤其是对于拥有大量用户的APP来说&#xff0c;合理的广告策略不仅能提高用户黏性&#xff0c;还能带来可观的收益。本文将深入探讨APP广告变现的…

webstorm 设置大括号、问号、冒号、if 或for条件 、+-*/ 运算符等两侧的空格(2024-04-18)

在setting设置里面 我这里演示javascript 【Editor-Code Style-JavaScript-Spaces】 import {Component} from react 改为 的 import { Component } from react { }内部两侧都加空格 根据自己的需求设置 [ ]大括号内部两端的空格

安卓原生项目工程结构说明

.gradle 和 .idea (自动生成) .gradle 是gradle下载好的缓存&#xff0c;如果有配置好的 下载好的缓存 直接会拿来用 没有会下载 生成 .idea 是编辑器的配置 app 代码主逻辑 目录 项目中的代码 资源都会在里面 工作的时候的核心目录 gradle 下载安卓的构建器gradle相关的配置信…

连续正整数之和-第12届蓝桥杯省赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第55讲。 连续正整数之和&a…

游戏黑灰产识别和溯源取证

参考&#xff1a;游戏黑灰产识别和溯源取证 1. 游戏中的黑灰产 1. 黑灰产简介 黑色产业&#xff1a;从事具有违法性活动且以此来牟取利润的产业&#xff1b; 灰色产业&#xff1a;不明显触犯法律和违背道德&#xff0c;游走于法律和道德边缘&#xff0c;以打擦边球的方式为“…

什么是区块链?什么是X314协议?

X314协议是一种基于区块链技术的分布式账本协议&#xff0c;具有去中心化、安全性高和可扩展性强的特点。本文将从多个角度对X314协议进行通俗解释&#xff0c;带您了解这一前沿技术。 一、什么是区块链和分布式账本&#xff1f; 首先&#xff0c;我们需要了解什么是区块链和分…

Linux 引导过程与服务控制

Linux操作系统引导过程 完整启动过程 简化紧要关键步骤&#xff08;重点&#xff09; Linux系统开机引导过程&#xff1a; 1&#xff09;开机自检 检测硬件设备&#xff0c;找到能够引导系统的设备&#xff0c;比如硬盘 2&#xff09;MBR引导 运行MBR扇区里的主…

ASP.NET MVC中Filter过滤器的使用

MVC Filter是典型的AOP&#xff08;面向切面编程&#xff09;应用&#xff0c;在ASP.NET MVC中的4个过滤器类型&#xff0c;如下&#xff1a; 但是默认实现它们的过滤器只有三种&#xff0c;分别是ActionFilter&#xff08;方法&#xff09;&#xff0c;Authorize&#xff08;授…

Rust-01 Hello Rust 10分钟上手编写第一个Rust程序 背景介绍 发展历史 环境配置 升级打怪的必经之路

背景介绍 Rust 是一种多范式、通用的编程语言&#xff0c;强调性能、类型安全和并发性。它通过一个称为“借用检查器”的机制在编译时追踪所有引用的对象生命周期&#xff0c;以强制实现内存安全&#xff0c;即确保所有引用都指向有效的内存&#xff0c;而不需要垃圾收集器。 …