NCF29A1 高端阻抗匹配

一、前言

        Class E 高端 L-Front 匹配集成了额外的滤波器,提供了足够的谐波衰减,使 NCF29A1 与天线在比基频更高的频率下具有相当大的增益。向 PA 提供的阻抗和输出电容与表 1 ZPAOUT 所示相同。

 



 

二、原理图


 



图 1 高端 L-Front 匹配原理图
 

        1)从基本的 L-Front 匹配派生,集成了一个附加的低通滤波器与 H2 陷波。
        2)C2 和 L3 形成一个串联谐振电路,该电路被调谐到二次谐波。电路是并联的,用作陷波来衰减二次谐波中的功率。
        3)L2 和 C3 作为独立的串联谐振电路,在低次谐波中降低功率。
        4)扼流圈电感 L4 提供 PA 电源电压,并连接到串联电容 C3 前面的匹配网络。

三、匹配网络
 

        高端的 L-Front 匹配允许比基本匹配更灵活地调整匹配阻抗 ZPAOUT。它使用较小的线圈值来降低线圈类型对良好的高谐波衰减的要求。它主要提供 H2 和 H3 有更好的衰减。这些优点使高端匹配成为使用非 PCB 天线或线圈类型限制或元件值范围有限的应用的更好选择。

        匹配网络由多个谐振电路组成,主要是为了减小基频的相位延迟。下面将根据理想条件下该频率处的阻抗来解释匹配网络。
 

        1)如图 2 所示,匹配网络和阻抗,忽略 PCB 对 Cb_EXT 的其他影响:


 



图 2

        2)如图 3 所示,在基频条件下:

                ① 由于 LChoke & CNH2 共振,C4 接地电容容值一般为 100pF,容值较大,高频信号会通过它流入地平面,C4 相当于给高频信号提供一个短路。
                ② H2 陷波在基频处的阻抗由 C2 控制。如果选择 C2 和 L3 在 H2 处共振:CNH2 = 4/3 * C2。



图 3
 

        3)由图 3 所示,CNH2 可以选择与扼流圈电感共振。这要求 C2 小于 2pF,以便为 L4 提供足够高的值。由于共振,LChoke 和 CNH2 在基频上是不可见的,如图 4 所示。



图 4
 

        4)选择由 C3 和 L2 组成的串联网络在基频上谐振。通过这个 Z1 将几乎相同的 50Ohm 提供的天线。



图 5
 

        在实际应用中,PCB 和网络元件的影响是不可避免的。通过使用网络分析仪监测阻抗,仍然可以选择使阻抗 Z1 和 Z2 几乎符合理想条件的元件。

        Z1 在实际中需要一定的容差,应该在 40 到 60 欧姆的范围内,只有很小的电抗。
 

四、匹配过程
 

        下图 6 显示了在基频 434MHz 下使用典型值模拟的网络的不同阻抗。

        由于 CNH2(CNH2 = 4/3 * C2)和 LCHOKE 的共振,阻抗 TP3 等于 TP5 (Z2)。TP6,即阻抗 Z1,接近天线输入阻抗 50Ohm,最终 ZPAOUT 调整到(50+j115)Ohm。
 



图 6 射频匹配仿真实例,用于 434MHz 和 10dBm 输出功率

高端匹配步骤:
 

        1)准备

                ① 使用 PCB 安装所有组件,如按钮,LED 和 LF 线圈天线。
                ② NCF29A1 / NCF29A2 和 RF 匹配元件不贴。

        2)默认条件的设置
 

        ① 将天线与 PA 匹配电路断开,并以 50Ohm 电阻终止,使 C3 的远端焊盘(Port 1)显示阻抗为 50Ohm。

        ② 测量 PCB 杂散电容 Cb_EXT 的值,如图 7 所示,网络分析仪探头 GND 连接到 PCB NCF29A1 的外露模垫,探头测试点连接到 PAOUT 引脚上。预期电容值范围为 200fF ~ 400fF。


 



图 7 测量 PCB 提供的输出电容
 

        3)贴上 C3, 由于 L2 和 C3 在基频上谐振,L2的自谐振频率应在三次谐波频率以上,以衰减低次谐波,相应地,根据实际使用的线圈,C3 不应选择太小,下面是不同基频下 C3 的取值:

  • 315MHz:7pF
  • 434MHz:7pF
  • 868MHz:5pF
  • 950MHz:2pF

        根据对应基频选取 C3 容值。
 

        4)设置 H2 陷波和 L4

                ① 贴上 C4,推荐容值 100pF。
                ② 在 1 ~ 2.2pF 之间选择 C2 容值:

  • 315MHz:8pF ~ 2.2pF
  • 434MHz:5pF ~ 1.8pF
  • 868MHz 及以上:0pF 及以下


                ③ 计算 L3 在 2 次谐波频率下与 C2 共振的值:
 

                        L = 1/(C*(2pf)2)

                        由于 PCB 布局和元器件频率依赖关系的影响,需要实现的 L3 值通常比计算值小 1 ~ 2nH。
 

                ④ 用上述公式计算在基频下与 4/3*C2+0.5pF 谐振的 L4 值,并贴上 L4 电感。
                ⑤ 根据 ② ③ 的选取和计算,贴上 L3、C2 对应元件值。

        5)设置 L2

                ① 由于 L2 & C3 在基频上共振,可根据公式 L = 1/(C*(2pf)2) 和 C3 容值,计算 L2 的感值。
                ② 如果 PA 阻抗 ZPAOUT 要求的启动阻抗 Z1 与 50Ohm 略有不同,则 L2 应该稍高或稍低。
                ③ 测量基频 C1 处的阻抗 Z1(如图 5),它应该在 40 到 60 欧姆的范围内,只有小的电抗。

        6)调整 ZPAOUT

                ① 放置 L1 和 C1 使阻抗 ZPAOUT ≈ 50Ω。
                ② ZPAOUT 最好在图 7 所示的同一点测量。
                ③ 阻抗 Z1 需要如步骤 5 中所述,保持在 40 到 60 欧姆的范围内。
                ④ 确保 ZPAOUT 要尽可能准确,公差将导致电源电流的增加。
                ⑤ 为了更好地阻抗匹配,必要时可以改变阻抗 Z1。

        7)测试 PA 性能

                ① 贴上 NCF29A1。此外,还可以使用第二块 PCB,所有组件均已安装,包括 NCF29A1 以及在上面步骤中找到和定义的匹配元件值。
                ② 拆除步骤 2 中引入的 50Ω 电阻,以之前放置 50Ω 电阻的端点处为测试点焊接上射频探头。
                ③ 给 NCF29A1 上电,并将射频探头与频谱分析仪连接。 (频谱分析仪现在提供 50Ω 以具有相同条件的阻抗 ZPAOUT)
                ④ 通过按键或者低频信号触发 NCF29A1 发射高频信号,可以在频谱仪上获取到 NCF29A1 对应的发射功率,如图 8 所示。


 



图 8 NCF29A1 PA 的频谱仪测量结果
 

  • PA 输出功率应与软件设定值(一般为 10dBm)一致。
  • 由于 50Ω 是由频谱分析仪为谐波提供的,电流供应可能比预期高 1~2mA。


        8)连接天线

                ① 调整天线,使其在默认情况下提供 50 欧姆
 

  • 对于手持设备,PCB应放置在外壳中,以避免后期因其影响而误配。


                ② 将天线连接到 PA 匹配电路。
                ③ 最后测试辐射功率和电流消耗方面的性能。
       
        9)性能优化

 

        ① 如果二次谐波的发射功率过高,则需要测试下一个不同的 L3 值,以优化 H2 陷波。这可能需要重复后面的匹配步骤。

        ② 如果 H2, H3 或 H4 的谐波功率过高,则根据步骤 3 的描述,需要降低 C3 的值,增加 L2 的值,以满足谐振条件。如果找到了更好的组合,则需要通过重复后面的匹配步骤来调整 ZPAOUT。

        ③ 在某些情况下,可以通过稍微改变 C1 和 L1 的 ZPAOUT 来提高电流消耗/输出功率性能,以满足应用需求。为此,可以用 C1 和 L1 的附近值测试应用 PCB。这种测试应该对由初始值、下一个较高值和下一个较小值组成的两个组件的所有组合进行。



五、参考文献

[1] AN-CAI1403_TOKEN_RF_PA_Matching (1.1).pdf

登录大大通,了解更多详情,解锁1500+完整应用方案,更有大联大700+FAE在线答疑解惑! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/642135.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

lementui el-menu侧边栏占满高度且不超出视口

做了几次老是忘记,这次整理好逻辑做个笔记方便重复利用; 问题:elementui的侧边栏是占不满高度的;但是使用100vh又会超出视口高度不美观; 解决办法: 1.获取到侧边栏底部到视口顶部的距离 2.获取到视口的高…

vue实现水平排列且水平居中

样式实现 .body{text-align: center; } .body_content{display: inline-block; } .body_content_cardList{display: flex;flex-wrap: wrap;text-align: center; }<div class"body"><div class"body_content"><div class"body_content…

过滤器Filter和拦截器Interceptor心得

上一篇文章讲了监听器Listener&#xff0c;下面我们来讲一下过滤器和拦截器。 一、过滤器Filter。 首先&#xff0c;servlet容器&#xff08;比如tomcat&#xff09;肯定的要有servlet才能发挥它的光彩。在上古jsp时代&#xff0c;我们会写各种servlet通过不同的请求来实现我…

日志框架整合SpringBoot保姆级教程+日志文件拆分(附源码)

介绍 日志概述 只要程序员投身在实际的学习和生产环境中&#xff0c;就会对日志的重要性有着充分的认知&#xff0c;尤其是对于 Web 以及更高级的应用。在很多情况下&#xff0c;日志可能是我们了解应用如何执行的唯一方式。 但是现实是很多程序员对于日志的记录的认知比较肤…

基于CAPL的S19文件解析

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

计算IP地址总个数的方法及其应用

IP地址是计算机网络中用于唯一标识和定位设备的数字地址&#xff0c;是Internet Protocol&#xff08;IP&#xff09;的核心组成部分。计算IP地址的总个数是网络规划和管理中的重要任务之一&#xff0c;本文将介绍计算IP地址总个数的方法及其应用。 IP地址查询&#xff1a;IP数…

如何在PostgreSQL中创建一个新的数据库,并指定所有者?

文章目录 解决方案示例代码 PostgreSQL是一个强大的开源关系型数据库管理系统&#xff0c;它允许用户创建和管理多个数据库。在PostgreSQL中创建一个新的数据库并指定所有者是一个常见的操作。下面&#xff0c;我们将详细解释如何执行这一操作&#xff0c;并提供示例代码。 解…

e2e测试框架之Cypress

谈起web自动化测试&#xff0c;大家首先想到的是Selenium&#xff01;随着近几年前端技术的发展&#xff0c;出现了不少前端测试框架&#xff0c;这些测试框架大多并不依赖于Selenium&#xff0c;这一点跟后端测试框架有很大不同&#xff0c;如Robot Framework做Web自动化测试本…

【视频异常检测】Open-Vocabulary Video Anomaly Detection 论文阅读

Open-Vocabulary Video Anomaly Detection 论文阅读 AbstractMethod3.1. Overall Framework3.2. Temporal Adapter Module3.3. Semantic Knowledge Injection Module3.4. Novel Anomaly Synthesis Module3.5. Objective Functions3.5.1 Training stage without pseudo anomaly …

Spingboot人工智能工程应用框架,你要干的活全部交给它

欢迎来到 Spring AI 项目&#xff01; Spring AI 项目为开发 AI 应用程序提供了 Spring 友好的 API 和抽象。 让你变得Beans聪明起来&#xff01; 有关更多信息&#xff0c;请参阅我们的Spring AI 参考文档。 项目链接 文档 问题 讨论- 如果您有问题、建议或反馈&#xf…

「GO基础」GO程序组成要素

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

HART协议

一、HART协议 HART 协议采用美国电话通讯系统Bell202频移键控(FSK)标准&#xff0c;在4&#xff5e;20mA的模拟0.5mA的正弦波&#xff0c;波特率是 1200bps。因为所叠加的正弦信号平均值为0&#xff0c;而且相位连续频移键控技术要求在波特率为 1200Hz的数据位 1 和 0 的边界的…