第100+6步 ChatGPT文献复现:ARIMAX预测新冠

基于WIN10的64位系统演示

一、写在前面

我们继续来解读ARIMAX模型文章,这一轮带来的是:

《PLoS One》杂志的2022年一篇题目为《A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers》文章的公开数据做案例。

这文章做的是用:使用Xgboost结合天气数据预测新冠。

题目里没说ARIMAX模型,实际上它在文章中被作为对照组。

二、闲聊和复现:结果一描述性分析

1全文技术路线

① 收集天气相关的数据,比如气温、湿度、降雨量、风速和气压。作者认为这些天气情况可能会影响病毒的传播。

② 使用了两种不同的统计模型来分析数据和做出预测:ARIMAX和XGBoost。

③ 将模型输出的预测数值与实际发生的病例数进行对比,来看看哪个模型的预测更准确。

④ 选择那个对于某个特定国家预测结果更好的模型,认为这个模型是最适合用来预测那个国家的COVID-19病例数的。

简单来说,这个研究就是试图找出最好的方法来预测不同国家的COVID-19病例数,帮助我们理解疫情可能如何发展。

GPT看图写作文,我只是搬运过来。也就是用气象数据辅助预测COVID-19,感觉这个思路是万金油,可能也可以预测股票走势。

(2)逐段解析

第一、二段,描述性统计,没啥好说的,就是丰富结果(凑图)呗:

第三段,直奔主题:

翻译一下:

这段时间序列图展示了自疫情开始至2022年1月29日,各个南亚区域合作联盟(SAARC)国家的COVID-19确诊病例趋势。孟加拉国、尼泊尔和巴基斯坦的每日确诊病例在不同时期出现波动,包括一些高速上升的趋势。阿富汗和斯里兰卡的模式非常相似,显示出明显的下降倾向。总体而言,不丹和马尔代夫的COVID-19传播率相对于其他SAARC国家来说较低(见图3)。COVID-19确诊病例与气象变量之间的互相关性在0至30的滞后时间内形成。

为了探究在特定时期气象因素对COVID-19传播的影响,只考虑了正的滞后时间[48]。在阿富汗,最高温度和最低温度在滞后时间0处显示出与COVID-19确诊病例显著相关。在印度,只有在滞后时间4天的最高温度显示出显著关系。在孟加拉国滞后9天和马尔代夫滞后13天的最大风速显示出显著关系。在不丹的滞后26天和尼泊尔的滞后10天的相对湿度与COVID-19确诊病例显示出显著相关。地表气压在印度滞后9天、斯里兰卡滞后13天以及巴基斯坦滞后28天与COVID-19确诊病例显示出显著相关(见图4)。

解读,很明显可以分成两段话:

① 疫情趋势图的描述,没啥好说的哈,就客观描述就好;

② 疫情时序图与气象自变量的相关矩阵分析,我们用SPSS整一下:

第一个图是Afghanistan的疫情与最高温度:

有一点要注意的是定义日期得谁,选天哈。

看看这个结果:相关性绝了,气候因素真实万金油的存在。

回到文章的描述:“在阿富汗,最高温度和最低温度在滞后时间0处显示出与COVID-19确诊病例显著相关。”:问题来了,为啥只描述滞后0处,1-30没有描述?而且最后构建ARIMAX模型的时候,选取哪个滞后阶数?

类似的,其他国家的也是存在这种现象,

“在印度,只有在滞后时间4天的最高温度显示出显著关系。”:然后我发现他们在图四中放错图了,并不是最高温度,正确的图如下:

似乎、貌似、可能0-30天都有相关关系吧,求解答。

其他结果,大家自行探索吧。

第四段,构建ARIMAX模型:

翻译:

上述气象因素作为协变量,在不同的滞后期内被用于ARIMAX模型中,以确定它们对COVID-19确诊病例的影响。例如,在阿富汗,滞后0的最高和最低温度被用作构建ARIMAX模型的协变量。同样,对于孟加拉国、不丹、印度、马尔代夫、尼泊尔、巴基斯坦和斯里兰卡,滞后变量被用作协变量,并在表2中显示了这些变量对疾病的影响。

表2展示了阿富汗同一天(即滞后0)的最低温度(β = -8.93,95% CI: -14.30, -3.56)对COVID-19病例传播产生了负面影响。印度滞后4天的最高温度(β = 0.18,95% CI: 0.01, 0.35)和阿富汗同一天(即滞后0)的最高温度(β = 11.91,95% CI: 4.77, 19.05)对COVID-19确诊病例的传播产生了正面影响。孟加拉国滞后9天的最大风速(β = -53.89,95% CI: -93.45, -14.32)和马尔代夫滞后13天的最大风速(β = -4.24,95% CI: -8.31, -0.18)对COVID-19确诊病例的传播产生了负面影响。尼泊尔滞后10天的相对湿度(β = -4.84,95% CI: -9.20, -0.48)和不丹滞后26天的相对湿度(β = -0.12,95% CI: -0.22, -0.02)对COVID-19确诊病例产生了负面影响。巴基斯坦滞后28天的地面压力(β = 25.77,95% CI: 7.85, 43.69)和斯里兰卡滞后13天的地面压力(β = 411.63,95% CI: 49.04, 774.23)对COVID-19确诊病例产生了正面影响。此外,印度滞后9天的地面压力(β = -1.91,95% CI: -3.75, -0.06)对COVID-19确诊病例的传播产生了负面影响。关于气象因素对COVID-19传播影响的详细结果在表2中呈现。

这里他们把建模策略说的比较详细了:首先建立ARIMA模型,然后纳入气象因素。至于气象因素的滞后因子的取值,就一个一个尝试(统计检验需P值小于0.05),我们使用SPSS,以印度为例子:

(1)寻找最优的ARIMA模型,我就直接上结果:

ARIMA(0,1,6),跟文章中的不太一样,毕竟软件不同。注意,这里没有使用季节参数P、D、Q。

(2)加入最高温度纳入自变量,寻找最优的ARIMAX模型,我把最高温度滞后值从0尝试到30,只有滞后等于19的时候,P值小于0.05:

可以看到,模型的参数除了MAPE提升了不少,其他似乎大同小异。至于“(β = 0.18,95% CI: 0.01, 0.35)”,SPSS似乎不能提供了。

三、个人感悟

ARIMAX模型,并非看着的那么光鲜亮丽,有时候还不如单纯的ARIMA模型。

四、数据

链接:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273319

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/642138.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java】HOT100 回溯

目录 理论基础 一、组合问题 LeetCode77:组合 LeetCode17:电话号码的字母组合 LeetCode39:组合总和 LeetCode216:组合总和ii LeetCode216:组合总和iii 二、分割问题 LeetCode131:分割回文串 Leet…

【Linux开发 第十三篇】shell编程

shell编程 shell编程shell脚本函数 数据库备份 shell编程 对于后端开发,掌握shell编程是非常有必要的,可以对服务器进行维护,同时也可以对数据库进行操作 shell是一个命令解释器,它为用户提供了一个向Linux内核发送请求来运行的界…

NCF29A1 高端阻抗匹配

一、前言 Class E 高端 L-Front 匹配集成了额外的滤波器,提供了足够的谐波衰减,使 NCF29A1 与天线在比基频更高的频率下具有相当大的增益。向 PA 提供的阻抗和输出电容与表 1 ZPAOUT 所示相同。 二、原理图 图 1 高端 L-Front 匹配原理图 1&#xff…

lementui el-menu侧边栏占满高度且不超出视口

做了几次老是忘记,这次整理好逻辑做个笔记方便重复利用; 问题:elementui的侧边栏是占不满高度的;但是使用100vh又会超出视口高度不美观; 解决办法: 1.获取到侧边栏底部到视口顶部的距离 2.获取到视口的高…

vue实现水平排列且水平居中

样式实现 .body{text-align: center; } .body_content{display: inline-block; } .body_content_cardList{display: flex;flex-wrap: wrap;text-align: center; }<div class"body"><div class"body_content"><div class"body_content…

过滤器Filter和拦截器Interceptor心得

上一篇文章讲了监听器Listener&#xff0c;下面我们来讲一下过滤器和拦截器。 一、过滤器Filter。 首先&#xff0c;servlet容器&#xff08;比如tomcat&#xff09;肯定的要有servlet才能发挥它的光彩。在上古jsp时代&#xff0c;我们会写各种servlet通过不同的请求来实现我…

日志框架整合SpringBoot保姆级教程+日志文件拆分(附源码)

介绍 日志概述 只要程序员投身在实际的学习和生产环境中&#xff0c;就会对日志的重要性有着充分的认知&#xff0c;尤其是对于 Web 以及更高级的应用。在很多情况下&#xff0c;日志可能是我们了解应用如何执行的唯一方式。 但是现实是很多程序员对于日志的记录的认知比较肤…

基于CAPL的S19文件解析

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

计算IP地址总个数的方法及其应用

IP地址是计算机网络中用于唯一标识和定位设备的数字地址&#xff0c;是Internet Protocol&#xff08;IP&#xff09;的核心组成部分。计算IP地址的总个数是网络规划和管理中的重要任务之一&#xff0c;本文将介绍计算IP地址总个数的方法及其应用。 IP地址查询&#xff1a;IP数…

如何在PostgreSQL中创建一个新的数据库,并指定所有者?

文章目录 解决方案示例代码 PostgreSQL是一个强大的开源关系型数据库管理系统&#xff0c;它允许用户创建和管理多个数据库。在PostgreSQL中创建一个新的数据库并指定所有者是一个常见的操作。下面&#xff0c;我们将详细解释如何执行这一操作&#xff0c;并提供示例代码。 解…

e2e测试框架之Cypress

谈起web自动化测试&#xff0c;大家首先想到的是Selenium&#xff01;随着近几年前端技术的发展&#xff0c;出现了不少前端测试框架&#xff0c;这些测试框架大多并不依赖于Selenium&#xff0c;这一点跟后端测试框架有很大不同&#xff0c;如Robot Framework做Web自动化测试本…

【视频异常检测】Open-Vocabulary Video Anomaly Detection 论文阅读

Open-Vocabulary Video Anomaly Detection 论文阅读 AbstractMethod3.1. Overall Framework3.2. Temporal Adapter Module3.3. Semantic Knowledge Injection Module3.4. Novel Anomaly Synthesis Module3.5. Objective Functions3.5.1 Training stage without pseudo anomaly …