梯度,hesse阵与Jacobi矩阵

分清楚三个量的含义和计算方法。

梯度

表征的是一个列向量,是相对于某个方向而言的,但是某个方向上可能有多个变量,所以梯度不是简单的直接求偏导,并且说了,它是一个列向量,所以,
我们设 f : F f:F f:F R n R^n Rn-> R R R的一阶连续可微函数,则 f f f x x x处的一阶偏导数:
∇ \nabla f ( x ) f(x) f(x)=( ∂ f ( x ) ∂ x 1 \frac{\partial f(x)}{\partial x_1} x1f(x), ∂ f ( x ) ∂ x 1 \frac{\partial f(x)}{\partial x_1} x1f(x), ⋯ \cdots , ∂ f ( x ) ∂ x n \frac{\partial f(x)}{\partial x_n} xnf(x)) T ^T T
即:
∇ f ( x ) = ( ∂ f ( x ) ∂ x 1 ∂ f ( x ) ∂ x 2 ⋮ ∂ f ( x ) ∂ x n ) \nabla{f(x)}=\left(\begin{matrix}\frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{matrix} \right) f(x)= x1f(x)x2f(x)xnf(x)
所以说是一个 R n − > R R_n->R Rn>R的变换

hesse阵

在梯度的基础上就是二阶偏导就是hesse阵,注意由于是二阶偏导,所以不止是平方,还有混合偏导数的存在。

在这里插入图片描述
∇ 2 f ( x ) \nabla^2{f(x)} 2f(x)=( ∂ 2 f ∂ x i ∂ x j ) n × n \frac{\partial^2{f}}{\partial{x_i}\partial{x_j}})_{n\times n} xixj2f)n×n

∇ 2 f ( x ) = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ) \nabla^2f(x)=\left(\begin{matrix} \frac{\partial^2f}{\partial x_1^2} \frac {\partial^2f}{\partial x_1\partial x_2} \cdots \frac{\partial^2f}{\partial x_1\partial x_n} \\ \frac{\partial^2f}{\partial x_2 \partial x_1} \frac{\partial^2f}{\partial x_2^2} \cdots \frac{\partial^2f}{\partial x_2 \partial x_n} \\ \vdots \\ \frac{\partial^2f}{\partial x_n \partial x_1} \frac{\partial^2f}{\partial x_n \partial x_2} \cdots \frac{\partial^2f}{\partial x_n^2} \end{matrix} \right) 2f(x)= x122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn22f
每一行都已 x i x_i xi开始,然后求二阶继续从 x i x_i xi x n x_n xn求出

雅可比

其实是一种维度拓宽的梯度的表示方法,也就是 f f f F ⊆ R n → R m F\subseteq{R^n}\rightarrow{R^m} FRnRm x x x在F上连续可微,则一阶导数为:
在这里插入图片描述

F ′ ( x ) = ( ∂ F i ( x ) ∂ x j ) m × n ∈ R m × n F'(x)=(\frac{\partial{F_i(x)}}{\partial{x_j}})_{m\times n}\in{R^{m\times n}} F(x)=(xjFi(x))m×nRm×n
也就是说,向量值函数的导数就是雅可比矩阵,向量中的每一项分别求梯度再组合起来。
比如:对于 f : R n → R f:R^n \rightarrow R f:RnR
我们可以和梯度以及hesse阵联系起来看Jacobi矩阵,
H ( x ) = J ( ∇ f ( x ) ) H(x)=J(\nabla f(x)) H(x)=J(f(x))
H ( x ) = ∇ 2 f ( x ) H(x)=\nabla^2f(x) H(x)=2f(x)
梯度的Jacobi矩阵就是hesse阵。
举个例子说明一下:
在这里插入图片描述

以上用到的markdown语法
分数 x y \frac{x}{y} yx \frac{x}{y}
偏导数 ∂ f ( x ) \partial{f(x)} f(x) \partial{f(x)}
梯度 ∇ f ( x ) \nabla{f(x)} f(x) \nabla{f(x)}
表示x_1^2的: x i j x_i^j xij
×:\times
vdots
cdots
\leftarrow
\rightarrow
\in 属于
⊆ \subseteq 包含 \subseteq

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/643784.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】解决ubuntu20.04版本插入无线网卡没有wifi显示【无线网卡Realtek 8811cu】

ubuntu为Realtek 8811cu安装驱动,解决wifi连接问题 1、确认无线网卡的型号-Realtek 8810cu2、下载并配置驱动 一句话总结:先确定网卡的型号,然后根据网卡的型号区寻找对应的驱动下载,下载完成之后在ubuntu系统中进行编译&#xff…

STM32的GPIO输入和输出函数详解

系列文章目录 STM32单片机系列专栏 C语言术语和结构总结专栏 文章目录 1. GPIO模式 2. GPIO输出 2.1 RCC 2.2 GPIO 3. 代码示例 3.1 RCC时钟 3.2 GPIO初始化 3.3 GPIO输出函数 3.4 推挽输出和开漏输出 4. GPIO输入 4.1 输入模式 4.2 数据读取函数 5. C语言语法 1…

STM32H750时钟频率和功耗以及RTC功能测试

STM32H750时钟频率和功耗和RTC功能测试 📌相关篇《STM32H750片外QSPI启动配置简要》 ✨在使用STM32CubeMX修改STM32H750时钟树参数时,如果使用软件自动求解,这是一个非常耗时的操作,有时候还不一定成功,还是推荐使用手…

【大模型】大模型时代的语音合成:音频的离散化表示

🔒文章目录 📊什么是音频离散化🎬音频离散化是什么 🌈SoundStream、Encodec🌂 SoundStream🚀Encodec 📊什么是音频离散化 🎬音频离散化是什么 在自然语言处理(NLP&…

从0到1—POC编写基础篇(二)

接着上一篇 POC常用基础模块 urllib 模块 Python urllib 库用于操作网页 URL,并对网页的内容进行抓取处理。 urllib 包 包含以下几个模块: ●urllib.request - 打开和读取 URL。 ●urllib.error - 包含 urllib.request 抛出的异常。 ●urllib.parse - …

WEB攻防-ASP中间件IIS文件上传解析安全漏洞

漏洞原理: 基于文件 IIS6.0默认不解析;号后面的内容,例如1.asp;.jpg会当成1.asp解析,相当于分号截断。 基于文件夹 IIS6.0会将/*.asp/文件夹下的文件当成asp解析。 案例: 写一个木马文件,并改为jpg后缀 GIF89agif8…

Maven:配置与使用指南1

https://mvnrepository.com Maven 1.maven简介 不同模块的jar包以及同时设计的功能的微小变化版本; 真实的开发环境:我们将我们的源代码在服务器上重新编译重新打包,工程升级维护过程繁琐 1.Maven是一个项目管理工具,将项目开…

代码随想录算法训练营第四十六天| LeetCode139.单词拆分

一、LeetCode139.单词拆分 题目链接/文章讲解/视频讲解:https://programmercarl.com/0139.%E5%8D%95%E8%AF%8D%E6%8B%86%E5%88%86.html 状态:已解决 1.思路 单词明显就是物品,字符串s明显就是背包,那么问题就变成了物品能不能把背…

IDEA pom.xml依赖警告

IDEA中,有时 pom.xml 中会出现如下提示: IDEA 2022.1 升级了检测易受攻击的 Maven 和 Gradle 依赖项,并建议修正,通过插件 Package Checker 捆绑到 IDE 中。 这并不是引用错误,不用担心。如果实在强迫症不想看到这个提…

高精度模板

高精度模板 1. 高精度加法2. 高精度减法3. 高精度乘法4. 高精度除法 1. 高精度加法 高精度加法其实就是一个模拟过程,模拟我们正常计算。但是要注意的是,我们正常将两个数进行相加的时候说从右往左进行相加的,所以这里我们的字符串也是要从右…

每日一题---反转链表

文章目录 前言1.题目2.代码思路3.参考代码 前言 Leetcode—反转链表 1.题目 2.代码思路 3.参考代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/typedef struct ListNode ListNode; struct ListNode* reve…

【数据结构】单链表的逻辑结构和物理结构

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:数据结构 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进…