AI大模型探索之路-训练篇1:大语言模型微调基础认知

文章目录

  • 前言
  • 一、微调技术概述
  • 二、微调的必要性
  • 三、大模型的微调方法
  • 四、微调过程中的技术细节
  • 五、微调后的模型评估与应用
  • 总结


前言

在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的模型通常具有泛化特性,它们往往无法直接适配到特定的应用场景和细化需求中。为了弥补这一差距,研究人员提出了微调(Fine-tuning)技术。该技术允许模型通过学习额外的、与特定任务相关的数据,从而增强其在特定领域的表现力。本文旨在从专业角度深入探讨大型AI模型微调的概念框架、方法学及其在实际应用中的重要性。
在这里插入图片描述

一、微调技术概述

微调是在预先训练的模型基础上实施的一种有监督的训练策略。为了充分理解微调的应用背景,首先需了解AI大模型的关键使用阶段。以下为AI大模型应用的核心步骤概览:

1)Prompt工程:利用精心设计的自然语言提示指导大模型执行具体任务或解决特定问题。
2)Agent开发:结合大模型的强大能力,构筑各类应用程序,如智能知识库、自助查询系统等。

3)微调:采用有监督学习的方式,基于特定任务的数据对模型进行训练,以优化其预测效果。

4)预训练:通过无监督学习,使模型在大量文本数据上学习语言表示,以便用于后续的任务,如文本续写或分类。
在这里插入图片描述

二、微调的必要性

在这里插入图片描述

GPT-3训练一次的成本约为139.8万美元,而PaLM需要一千多万美元
尽管AI大模型在许多任务中取得了显著的成果,但它们仍然存在一些应用上的缺陷。这些缺陷主要表现在以下几个方面:
1)预训练成本巨大:大规模的模型预训练不仅需要大量的计算资源,同时耗费巨额的资金和时间。
2)行业数据分布的多样性:不同领域的数据分布有着根本的差异性,这导致通用预训练模型难以在所有任务中都达到理想的表现。
3)企业数据安全性:处理敏感的企业私有数据时,如何确保数据的安全性成为了必须解决的问题。
4)Prompt Engineering的高成本:设计有效的Prompt指导大模型完成特定任务过程既耗时又耗力。
5)外部知识的依赖性:大模型需要借助向量数据库等外部知识源来增强其知识储备和应用能力。

针对以上挑战,微调技术提供了一种高效的解决方案。通过对预训练模型进行针对性的微调,可以显著提升其在特定任务上的性能,降低推理成本,并在一定程度上确保企业数据的安全。

三、大模型的微调方法

目前,主流的大模型微调方法主要包含以下几种策略:
**1)全量微调FFT(Full Fine Tuning):**这种方法涉及调整整个模型的所有参数。虽然它可以在一定程度上提高模型性能,但同时也可能带来较高的训练成本和灾难性遗忘的风险。

2)部分参数微调PEFT(Parameter-Efficient Fine Tuning):这种方法仅调整部分参数,从而降低了训练成本。这包括在线模型和离线模型的微调。

在线模型:例如OpenAI发布的模型,可通过标准的微调流程进行调整。
离线模型:采用LoRA、QLoRA、Adapter、Prefix-tuning、P-tuning2、Prompt-tuning等技术进行更高效的微调
在这里插入图片描述
简单代码样例:

# 导入相关库
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer# 加载预训练模型和分词器
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 准备数据
inputs = tokenizer("Hello, I am a fine-tuned model.", return_tensors="pt")
labels = torch.tensor([1]).unsqueeze(0)# 进行部分参数微调
for name, param in model.named_parameters():if "layer" in name:  # 只调整特定层数的参数param.requires_grad = Trueelse:param.requires_grad = False# 进行训练
outputs = model(**inputs, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()

四、微调过程中的技术细节

在进行大模型的微调过程中,以下技术细节不容忽视:
1)数据预处理:根据特定任务的需求进行数据清洗与格式化,以确保输入数据的质量和适配性。
2)损失函数设计:根据不同任务的特点选择合适的损失函数,以指导模型优化正确的目标。
3)正则化策略:应用适当的正则化技术如权重衰减、Dropout等,防止过拟合,增强模型的泛化能力。
4)学习率调整:通过精心设计的学习率计划或自适应学习率算法,平衡训练过程中的收敛速度和稳定性。

五、微调后的模型评估与应用

经过微调的模型需要在多个层面进行评估,以保证其在实际环境中的有效性和鲁棒性:
1)性能指标:使用精确度、召回率、F1分数等标准度量来评价模型在特定任务上的表现。
2)实际应用场景测试:将模型部署到真实的应用环境中,检验其在实际操作中的可行性和效率。
3)对抗性测试:评估模型在面对对抗样本时的稳定性,确保其在潜在攻击下仍能保持正确和稳定的输出。


总结

AI大模型的微调作为一项核心技术,已在多个应用场景中证明了其不可或缺的价值。经过微调的预训练模型能够更加精准地适应特定任务,提升性能的同时降低成本。此外,微调后的模型在保护企业数据的隐私性和安全性方面也显示出其优势。随着技术的不断演进和深化,我们有理由相信,AI大模型的微调将在未来的发展中扮演更为关键的角色,并在更广泛的领域内实现其潜在的应用价值。

🔖更多专栏系列文章:AIGC-AI大模型探索之路

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/651102.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux网络—DNS域名解析服务

目录 一、BIND域名服务基础 1、DNS系统的作用及类型 DNS系统的作用 DNS系统类型 DNS域名解析工作原理: DNS域名解析查询方式: 2、BIND服务 二、使用BIND构建域名服务器 1、构建主、从域名服务器 1)主服务器配置: 2&…

竞赛课第九周(埃式筛法,矩阵乘法)

1.埃式筛法:求区间[2, n]内所有的素数对 【参考代码】 #include <bits/stdc.h> using namespace std;const int N 1e5; vector<int> prime; bool visit[N];int main() {int n;cin>>n;memset(visit, false, sizeof(visit));for(int i2; i<sqrt(n); i){i…

Datasophon1.2.1集成Dinky1.0.1

Dinky 下载地址: https://github.com/DataLinkDC/dinky/releases/tag/v1.0.1 Dinky 官网&#xff1a;https://www.dinky.org.cn/ 1.下载Dinky wget https://github.com/DataLinkDC/dinky/releases/download/v1.0.1/dinky-release-1.16-1.0.1.tar.gz mv dinky-release-1.16-1.…

分享8款安全监控/日志记录工具

安全监控工具的作用是实时监控和分析系统的安全状态&#xff0c;而日志记录工具的作用主要是记录系统的运行过程及异常信息。 关于安全监控工具&#xff0c;它通过对计算机系统、网络、应用程序和数据进行实时监控和分析&#xff0c;帮助发现和防止安全威胁和攻击。这种监控不…

tcp inflight 守恒算法背后的哲学

tcp inflight 守恒拥塞控制的正确性 很久以前我开始纠结 tcp 锯齿&#xff0c;很多年后我知道这叫 capacity-seeking&#xff0c;甚至说 tcp 属于 capacity-seeking protocol 的原因就是它早已深入人心的 aimd 行为&#xff0c;而该行为生成了 tcp 锯齿。 在消除锯齿&#xf…

您的计算机已被rmallox勒索病毒感染?恢复您的数据的方法在这里!

引言&#xff1a; 在当今数字化时代&#xff0c;网络安全问题日益突出&#xff0c;其中勒索病毒作为一种新型的网络威胁&#xff0c;正逐渐引起人们的广泛关注。其中&#xff0c;.rmallox勒索病毒作为近期出现的一种新型恶意软件&#xff0c;给个人和企业带来了巨大的经济损失…

Open CASCADE学习|一个点的坐标变换

gp_Trsf 类是 Open CASCADE Technology (OCCT) 软件库中的一个核心类&#xff0c;用于表示和操作三维空间中的变换。以下是该类的一些关键成员和方法的介绍&#xff1a; 成员变量&#xff1a; scale: Standard_Real 类型&#xff0c;表示变换的缩放因子。 shape: gp_TrsfFor…

利用Spring Boot后端与Vue前端技术构建现代化电商平台

作者介绍&#xff1a;✌️大厂全栈码农|毕设实战开发&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 &#x1f345;获取源码联系方式请查看文末&#x1f345; 推荐订阅精彩专栏 &#x1f447;&#x1f3fb; 避免错过下次更新 Springboot项目精选实战案例 更多项目…

【程序分享1】LAMMPS + OVITO + 晶体缺陷识别 + 点缺陷 + 分子动力学模拟

分享2个分子动力学模拟相关的程序。 1. 一种识别体心立方晶体缺陷的新方法。 2. 无后处理的分子动力学模拟中的并行点缺陷识别: lammps的计算和转储方式 。 感谢论文的原作者&#xff01; 第1个程序 关键词&#xff1a; 1. Atomistic simulations, 2. Molecular dynamics…

JSON六种值类型的写法

JSON&#xff08;JavaScript Object Notation&#xff09;是一种人类可读的文本数据格式。它源于JavaScript&#xff0c;标准开放&#xff0c;格式要求更为严格&#xff0c;独立于具体编程语言&#xff0c;常用于数据交换。 列举一段JSON数据&#xff0c;解释JSON六种值类型的…

网络安全实训Day22

网络空间安全实训-渗透测试 CSRF 定义&#xff1a;跨站伪造请求攻击 攻击者透过诱骗受害者点击攻击者提前构造的恶意链接&#xff0c;从而以受害者的身份向网站服务器发起请求&#xff0c;达到攻击的目的 通过CSRF在网站后台创建管理员 1.搭建创建管理员账号的站点 1.将对方网…

中国大模型落地应用案例集(2023)(医疗、教育、金融、科技、汽车、遥感等52个领域)

近日&#xff0c;中国信通院联合上海人工智能实验室成立的大模型测试验证与协同创新中心牵头&#xff0c;首次面向全国范围征集全行业优秀应用实践&#xff0c;并形成《2023大模型落地应用案例集》&#xff08;以下简称“《案例集》”&#xff09;。 《案例集》一共119页pdf&am…