Spark AQE 导致的 Driver OOM问题

背景

最近在做Spark 3.1 升级 Spark 3.5的过程中,遇到了一批SQL在运行的过程中 Driver OOM的情况,排查到是AQE开启导致的问题,再次分析记录一下,顺便了解一下Spark中指标的事件处理情况

结论

SQLAppStatusListener 类在内存中存放着 一个整个SQL查询链的所有stage以及stage的指标信息,在AQE中 一个job会被拆分成很多job,甚至几百上千的job,这个时候 stageMetrics的数据就会成百上倍的被存储在内存中,从而导致Driver OOM
解决方法:

  1. 关闭AQE spark.sql.adaptive.enabled false
  2. 合并对应的PR-SPARK-45439

分析

背景知识:对于一个完整链接的sql语句来说(比如说从 读取数据源,到 数据处理操作,再到插入hive表),这可以称其为一个最小的SQL执行单元,这最小的数据执行单元在Spark内部是可以跟踪的,也就是用executionId来进行跟踪的。
对于一个sql,举例来说 :

insert into  TableA select * from TableB;

在生成 物理计划的过程中会调用 QueryExecution.assertOptimized 方法,该方法会触发eagerlyExecuteCommands调用,最终会到SQLExecution.withNewExecutionId方法:

  def assertOptimized(): Unit = optimizedPlan...lazy val commandExecuted: LogicalPlan = mode match {case CommandExecutionMode.NON_ROOT => analyzed.mapChildren(eagerlyExecuteCommands)case CommandExecutionMode.ALL => eagerlyExecuteCommands(analyzed)case CommandExecutionMode.SKIP => analyzed}...lazy val optimizedPlan: LogicalPlan = {// We need to materialize the commandExecuted here because optimizedPlan is also tracked under// the optimizing phaseassertCommandExecuted()executePhase(QueryPlanningTracker.OPTIMIZATION) {// clone the plan to avoid sharing the plan instance between different stages like analyzing,// optimizing and planning.val plan =sparkSession.sessionState.optimizer.executeAndTrack(withCachedData.clone(), tracker)// We do not want optimized plans to be re-analyzed as literals that have been constant// folded and such can cause issues during analysis. While `clone` should maintain the// `analyzed` state of the LogicalPlan, we set the plan as analyzed here as well out of// paranoia.plan.setAnalyzed()plan}def assertCommandExecuted(): Unit = commandExecuted...private def eagerlyExecuteCommands(p: LogicalPlan) = p transformDown {case c: Command =>// Since Command execution will eagerly take place here,// and in most cases be the bulk of time and effort,// with the rest of processing of the root plan being just outputting command results,// for eagerly executed commands we mark this place as beginning of execution.tracker.setReadyForExecution()val qe = sparkSession.sessionState.executePlan(c, CommandExecutionMode.NON_ROOT)val name = commandExecutionName(c)val result = QueryExecution.withInternalError(s"Eagerly executed $name failed.") {SQLExecution.withNewExecutionId(qe, Some(name)) {qe.executedPlan.executeCollect()}}  

SQLExecution.withNewExecutionId主要的作用是设置当前计划的所属的executionId:

    val executionId = SQLExecution.nextExecutionIdsc.setLocalProperty(EXECUTION_ID_KEY, executionId.toString)

EXECUTION_ID_KEY的值会在JobStart的时候传递给Event,以便记录跟踪整个执行过程中的指标信息。
同时我们在方法中eagerlyExecuteCommands看到qe.executedPlan.executeCollect()这是具体的执行方法,针对于insert into 操作来说,物理计划就是
InsertIntoHadoopFsRelationCommand,这里的run方法最终会流转到DAGScheduler.submitJob方法:

    eventProcessLoop.post(JobSubmitted(jobId, rdd, func2, partitions.toArray, callSite, waiter,JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))

最终会被DAGScheduler.handleJobSubmitted处理,其中会发送SparkListenerJobStart事件:

    listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))

该事件会被SQLAppStatusListener捕获,从而转到onJobStart处理,这里有会涉及到指标信息的存储,这里我们截图出dump的内存占用情况:
在这里插入图片描述

可以看到 SQLAppStatusListener 的 LiveStageMetrics 占用很大,也就是 accumIdsToMetricType占用很大

那在AQE中是怎么回事呢?
我们知道再AQE中,任务会从source节点按照shuffle进行分割,从而形成单独的job,从而生成对应的shuffle指标,具体的分割以及执行代码在AdaptiveSparkPlanExec.getFinalPhysicalPlan中,如下:

      var result = createQueryStages(currentPhysicalPlan)val events = new LinkedBlockingQueue[StageMaterializationEvent]()val errors = new mutable.ArrayBuffer[Throwable]()var stagesToReplace = Seq.empty[QueryStageExec]while (!result.allChildStagesMaterialized) {currentPhysicalPlan = result.newPlanif (result.newStages.nonEmpty) {stagesToReplace = result.newStages ++ stagesToReplaceexecutionId.foreach(onUpdatePlan(_, result.newStages.map(_.plan)))// SPARK-33933: we should submit tasks of broadcast stages first, to avoid waiting// for tasks to be scheduled and leading to broadcast timeout.// This partial fix only guarantees the start of materialization for BroadcastQueryStage// is prior to others, but because the submission of collect job for broadcasting is// running in another thread, the issue is not completely resolved.val reorderedNewStages = result.newStages.sortWith {case (_: BroadcastQueryStageExec, _: BroadcastQueryStageExec) => falsecase (_: BroadcastQueryStageExec, _) => truecase _ => false}// Start materialization of all new stages and fail fast if any stages failed eagerlyreorderedNewStages.foreach { stage =>try {stage.materialize().onComplete { res =>if (res.isSuccess) {events.offer(StageSuccess(stage, res.get))} else {events.offer(StageFailure(stage, res.failed.get))}// explicitly clean up the resources in this stagestage.cleanupResources()}(AdaptiveSparkPlanExec.executionContext)

这里就是得看stage.materialize()这个方法,这两个stage只有两类:BroadcastQueryStageExec 和 ShuffleQueryStageExec
这两个物理计划稍微分析一下如下:

  • BroadcastQueryStageExec
    数据流如下:
    broadcast.submitBroadcastJob||\/
    promise.future||\/
    relationFuture||\/
    child.executeCollectIterator()
    其中 promise的设置在relationFuture方法中,而relationFuture 会被doPrepare调用,而submitBroadcastJob会调用executeQuery,从而调用doPrepare,executeCollectIterator()最终也会发送JobSubmitted事件,分析和上面的一样
  • ShuffleQueryStageExec
     shuffle.submitShuffleJob||\/sparkContext.submitMapStage(shuffleDependency)||\/dagScheduler.submitMapStage

submitMapStage会发送MapStageSubmitted事件:

    eventProcessLoop.post(MapStageSubmitted(jobId, dependency, callSite, waiter, JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))

最终会被DAGScheduler.handleMapStageSubmitted处理,其中会发送SparkListenerJobStart事件:

    listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))

该事件会被SQLAppStatusListener捕获,从而转到onJobStart处理:

  private val liveExecutions = new ConcurrentHashMap[Long, LiveExecutionData]()private val stageMetrics = new ConcurrentHashMap[Int, LiveStageMetrics]()...override def onJobStart(event: SparkListenerJobStart): Unit = {val executionIdString = event.properties.getProperty(SQLExecution.EXECUTION_ID_KEY)if (executionIdString == null) {// This is not a job created by SQLreturn}val executionId = executionIdString.toLongval jobId = event.jobIdval exec = Option(liveExecutions.get(executionId))

该方法会获取事件中的executionId,在AQE中,同一个执行单元的executionId是一样的,所以stageMetrics内存占用会越来越大。
而这里指标的更新是在AdaptiveSparkPlanExec.onUpdatePlan等方法中。

这样整个事件的数据流以及问题的产生原因就应该很清楚了。

其他

为啥AQE以后多个Job还是共享一个executionId呢?因为原则上来说,如果没有开启AQE之前,一个SQL执行单元的是属于同一个Job的,开启了AQE之后,因为AQE的原因,一个Job被拆成了了多个Job,但是从逻辑上来说,还是属于同一个SQL处理单元的所以还是得归属到一次执行中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/651677.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Jenkins】持续集成与交付 (一):深入理解什么是持续集成?

【Jenkins】持续集成与交付 (一):深入理解什么是持续集成? 1、软件开发生命周期与持续集成2、 持续集成的流程3、持续集成的好处4、Jenkins的应用实践5、结语💖The Begin💖点点关注,收藏不迷路💖 1、软件开发生命周期与持续集成 软件开发生命周期(SDLC)是指软件从…

【leetcode面试经典150题】75. 二叉树展开为链表(C++)

【leetcode面试经典150题】专栏系列将为准备暑期实习生以及秋招的同学们提高在面试时的经典面试算法题的思路和想法。本专栏将以一题多解和精简算法思路为主,题解使用C语言。(若有使用其他语言的同学也可了解题解思路,本质上语法内容一致&…

国产麒麟系统下打包electron+vue项目(AppImage、deb)

需要用到的一些依赖包、安装包以及更详细的打包方法word以及麒麟官网给出的文档都已放网盘,链接在文章最后!!!!!!!!!!!!&a…

OpenHarmony ArkUI 实战开发—ETS 装饰器解读

前言 最近利用空闲时间在学习华为方舟开发框架(简称:ArkUI)的ets开发,发现在ets语言中装饰器的有着非常重要的作用,在写每一个自定义组件时都需要用到它,看到装饰器这个字眼,想起之前学过的设计…

数据分析:转录组分析-kallisto或salmon的RNA-seq流程

RNA-seq pipeline through kallisto or salmon kallisto 和salmon相比含有hisat2和STAR等软的RNA-seq流程而言,速度更快,这是因为该软件基于转录组序列reference(也即是cDNA序列)并且基于k mer比对原理。通常如果想研究RNA-seq过…

Feign负载均衡

Feign负载均衡 概念总结 工程构建Feign通过接口的方法调用Rest服务(之前是Ribbon——RestTemplate) 概念 官网解释: http://projects.spring.io/spring-cloud/spring-cloud.html#spring-cloud-feign Feign是一个声明式WebService客户端。使用Feign能让…

RabbitMQ发布确认和消息回退(6)

概念 发布确认原理 生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker就会发送一个确认给生产者(包含消…

STM32学习和实践笔记(22):PWM的介绍以及在STM32中的实现原理

PWM是 Pulse Width Modulation 的缩写,中文意思就是脉冲宽度调制,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,其控制简单、灵活和动态响应好等优点而成为电力电子技术最广泛应用的控制方式&#xff…

数据结构系列-二叉树之前序遍历

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 这篇文章,我们主要的内容是对二叉树当中的前历的算法进行讲解,二叉树中的算法所要求实现的是 从根到左子树再到右子树的遍历顺序,可能这样不太…

RabbitMQ工作模式(4) - 路由模式

概念 路由模式(Routing)是 RabbitMQ 中的一种消息传递模式,也称为直连模式。它允许生产者将消息发送到一个交换机,并指定一个或多个路由键(routing key),交换机根据路由键将消息路由到与之匹配的…

H264编码标准SVC分层编码技术介绍

H264编码标准 H.264编码标准,也被称作MPEG-4 AVC(Advanced Video Coding),是一种被广泛使用的数字视频压缩标准。它由国际电信联盟(ITU-T)和国际标准化组织(ISO)共同开发&#xff0…

tcp inflight 守恒算法的自动收敛

inflight 守恒算法看起来只描述理想情况,现实很难满足,是这样吗? 从 reno 到 bbr,无论哪个算法都在描述理想情况,以 reno 和 bbr 两个极端为例,它们分别描述两种理想管道,reno 将 buffer 从恰好…